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Abstract

We use microdata on firms’ prices and production costs to study inflation

dynamics in high- and low-inflation environments. We document that prices

are set in a state-dependent way. Both the probability of a firm adjusting

its price and the magnitude of such adjustments are functions of the firm’s

price gap–the percentage difference between a firm’s ideal and current price.

We then develop a generalized state-dependent pricing model to account for

Belgian PPI inflation over the period 1999:Q1 to 2023:Q4. Conditional on

a path of cost shocks extracted from the data, the model explains both the

low and stable inflation of the pre-pandemic period as well as the pandemic

era surge. In normal times, the adjustment probabilities are approximately

constant and the model resembles a framework with time-dependent pricing

as in Calvo (1983). During the surge, the model captures the rise in inflation

along with the change in the price adjustment frequency, which is the driver

of the nonlinear dynamics.
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1 Introduction

In this paper, we use microdata on firms’ prices and costs to study inflation

dynamics in normal times and during the recent inflation surge. The key variable

in our analysis is the firm’s price gap, that is the gap between a its ideal price (after

the realization of shocks) and the price the firm is currently charging.

Every model with nominal price rigidity features a notion of a price gap.

What distinguishes different models is how firms adjust their prices in response

to their price gaps. For example, in the time-dependent pricing model of Calvo

(1983), firms can adjust their prices with a fixed probability and the firm’s expected

price change is linear in its price gap. Conversely, in state-dependent pricing

models (often known as menu cost models), the firm’s expected price change is a

nonlinear function of the price gaps because both the change in prices conditional

on adjustment and the adjustment frequency are endogenous functions of the gap.

The distinction between time- and state-dependent pricing is less significant

when the economy is in a low inflation environment, where shocks to desired

prices are typically small on average
1
. However, it becomes important in high

inflation environments, which typically involve large shocks to desired prices.

The recent inflation surge well illustrates these issues. Figure 1 displays the

year-over-year percentage change in producer price index (PPI) for the Belgian

manufacturing sector against the average frequency of price adjustment, between

1999:Q1 and 2023:Q4. Before the pandemic, both inflation and the average

frequency were low and relatively stable. Starting in early 2021, inflation surged

significantly and then began to collapse in mid-2022. Tracking inflation, the

frequency of price adjustment displays a boom and bust, more than doubling over

the course of the year, before gradually returning to its long-term trend. These

dynamics are similar to what occurred in the US and various other developed

economies worldwide (Blanco et al. 2024b; Cavallo et al. 2024).

We extend the micro-level data set assembled in Gagliardone et al. (2024)

1
See, for example, Dias et al. (2007a), Gertler and Leahy (2008), Alvarez et al. (2017), and Auclert

et al. (2024).
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Figure 1: Aggregate inflation and frequency of price adjustment
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Notes. This figure shows the time series of PPI manufacturing inflation along with the annual

frequency of price adjustments. The former is computed as the year-over-year percentage change

in the aggregate PPI. The latter is calculated as a rolling average of the quarterly frequency of price

adjustments over the previous four quarters.

to include the recent inflation surge. This dataset collects administrative records

on product-level output quantities, sales, and production costs at the quarterly

frequency for Belgian manufacturing firms. Using this data, we construct a notion

of price gaps for individual firms that accounts for variation in costs, prices, and

competitors prices. We analyze the data through the lens of a tractable menu cost

model in tradition of the classic generalized state-dependent models proposed by

Caballero and Engel (1993, 2007), Golosov and Lucas (2007), and Nakamura and

Steinsson (2010). The model nests time-dependent Calvo (1983), as a special case.

We use this framework to derive testable predictions that relate, in the microdata,

price changes to price gaps. We also use the model to explain the time-series of

aggregate inflation accounting for the dynamics of aggregate costs.

Our analysis produces two main sets of results. At the micro level, we

document strong evidence in favor of the state-dependent nature of firms’ pricing

decisions. First, we show that the probability of firm price adjustment (extensive

margin) is increasing and nonlinear in the price gap. Second, when firms

adjust their prices (intensive margin), they do so in order to close the price

gap. Third, the non-linearity in the speed of price adjustment explains the

non-linear inflation dynamics observed in the data after large shocks. During
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the post-pandemic period, we show how large cost shocks shifted the entire

distribution of price gaps, displacingmany firms away from their optimal price and

inducing large adjustments along the extensive margin. Fourth, we also show that

this mechanism was not at work in the low-inflation pre-pandemic period. When

shocks are small on average, price changes still depend on price gaps. However, as

in a standard Calvo model, the frequency of price adjustment is roughly constant,

the relationship between price changes and price is linear, and the passthrough

rate in the microdata is roughly constant.

The second set of results pertains to accounting for inflation at the macro

level. We leverage our micro data to construct an aggregate cost index for

the Belgian manufacturing sector. Descriptive evidence shows how inflation

fluctuations closely align with the variations in firm’s production costs throughout

the entire period. However, there is stickiness such that inflation moves less than

costs do. We also show that the sharp rise and fall in costs (and intermediates cost,

in particular), rather than a change in markups, appears to be main driver of the

surge and subsequent drop in inflation observed in the post-pandemic period.

Next, we formally assess the capacity of our menu cost model to explain

aggregate inflation over the entire sample period. We feed into the model the

marginal cost index described above and compare the model with the time series

observed in the data. We find that themodel tracks the high-frequency fluctuations

in manufacturing inflation remarkably well, both during the moderate inflation

regime characterizing the pre-pandemic period and during the post-pandemic

inflation surge and bust. Specifically, it captures the stable behavior of the

adjustment frequency pre-pandemic as well as the sharp jump in the adjustment

frequency following the onset of the pandemic, both in terms of timing and

magnitude. In contrast, a standard Calvo model, fed with the same cost sequence,

can account for only about two-thirds of the inflation.

Earlier research provided strong evidence of the state-dependent nature of

firm pricing decisions and showed how this class of models helps account for

inflation surges after large aggregate shocks. These include work by Alvarez et al.

(2016), Alvarez et al. (2022), and Midrigan (2011) on menu cost models; Alvarez
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et al. (2019) and Karadi and Reiff (2019), presenting evidence of state-dependent

pricing through case studies of hyperinflation in Argentina and major tax shocks

in Hungary; and, more recently, the works of Blanco et al. (2024a, 2024b), Cavallo

et al. (2024), andMorales-Jiménez and Stevens (2024), which apply state-dependent

frameworks to analyze the recent inflation surge. The key distinction between

these studies and ours lies in our ability to construct a high-frequency measure of

price gaps at the firm level. As we have emphasized above, this is the fundamental

building block of both time- and state-dependent pricing models. By analyzing

how the size and frequency of price adjustments relate to price gaps in the

microdata, we can directly assess the degree to which and under which conditions

firms’ pricing strategies conform with the theory.

Our study also bears relevance to the works of Eichenbaum et al. (2011) and

Karadi et al. (2021). The former uses data on prices and costs from a large food and

drug retailer to develop a "reference price" metric. The latter employs microdata

on supermarket prices to formulate a concept of reset prices, derived from the

average price at which the same product is offered by rivals. We observe high

frequency cost and price data for the entire Belgian manufacturing sector over a

long sample period. This allows us to construct an empirical measure of firm reset

prices and price gaps that factors in both the firms’ costs and the pricing of their

competitors.

Finally, the results in this paper connect with our earlier work, Gagliardone

et al. (2024) on the estimation of the slope of the cost-based New Keynesian

Phillips curve. Using Belgian microdata for the pre-pandemic period, we used

a time-dependent Calvo model to identify the structure parameters that enter

the slope. This paper lends additional empirical support to that identification

assumption by showing that the relationship between price gaps and price changes

is approximately linear in the absence of large shocks, due to the stability of the

adjustment frequency.

The paper proceeds as follows. Section 2 presents the theoretical framework

and derives testable implications. Section 3 describes our dataset and the empirical

measures of prices and price gaps. Section 4 provides empirical evidence showing
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that the model predictions linking price adjustments with price gaps align with

the microdata. We outline the calibration process and provide model simulations

in Section 5, showing how the calibrated model explains the inflation time series

and the frequency of price adjustments, including the rise during the pandemic.

Section 6 offers concluding remarks.

2 Theoretical framework

Our baseline framework is a variation of a standard discrete-time menu cost

model. To fit the data, we allow for both random menu costs as in Caballero

and Engel (2007) and random free price adjustments as in the “CalvoPlus” model

of Nakamura and Steinsson (2010).
2

For tractability, we follow Alvarez et al.

(2023) working with a quadratic approximation of the firm’s profit function and

permanent idiosyncratic shocks. In addition, motivated by our previous work

(Gagliardone et al. 2024), we allow for strategic complementarities in price setting.

This framework nests a standard Calvo (1983) as a special case.

2.1 A tractable state dependent pricing model

In each period 𝑡 , the economy is populated by a continuum of heterogeneous firms

𝑓 ∈ [0, 1] selling a single differentiated product under monopolistic competition

facing a demand function à la Kimball (1995). Using lower case letters to denote

the logarithm of the corresponding upper case variables, we denote by 𝑝𝑡 (𝑓 ) the
firm’s price and by 𝑝𝑡 the aggregate price index. Up to a first-order approximation

around the symmetric steady state, the latter is given by:

𝑝𝑡 ≈
∫
[0,1]

(
𝑝𝑡 (𝑓 ) − 𝜑𝑡 (𝑓 )

)
𝑑 𝑓 ,

where 𝜑𝑡 (𝑓 ) denotes a firm-specific log-taste shock, i.i.d. over firms and time.

2
See also Dotsey et al. (1999) for a discussion of random menu costs models in a general

equilibrium setting.
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Technology. Each firm operates with a constant return to scale production

technology 𝑦𝑡 (𝑓 ) = 𝑧𝑡 (𝑓 ) + 𝑙𝑡 (𝑓 ), which uses a composite input 𝑙𝑡 (𝑓 ) and is

characterized by a total factor productivity 𝑧𝑡 (𝑓 ). As is standard, we assume that

the latter evolves as a random walk, 𝑧𝑡 (𝑓 ) = 𝑧𝑡−1(𝑓 ) + 𝜁𝑡 (𝑓 ), where 𝜁𝑡 (𝑓 ) denotes
an idiosyncratic shock that is mean zero, and i.i.d. over time and firms.

Firms’ nominal marginal cost is given by:

𝑚𝑐𝑡 (𝑓 ) =𝑚𝑐𝑡 + 𝑧𝑡 (𝑓 ). (1)

The term 𝑚𝑐𝑡 captures an aggregate nominal cost shifter. Consistent with the

evidence, we assume that𝑚𝑐𝑡 obeys a random walk𝑚𝑐𝑡 =𝑚𝑐𝑡−1 + 𝑔𝑡 . We assume

that 𝑔𝑡 is common across firms, i.i.d. over time, drawn from a distribution with

a symmetric, uni-modal, and continuously differentiable density with mean 𝜇𝑔.

For analytical tractability, in what follows, we assume no trend inflation (𝜇𝑔 = 0).

Although this assumption might seem restrictive, Nakamura et al. (2018), Alvarez

et al. (2019) and Alvarez et al. (2022) show that an economy with zero inflation

provides an accurate approximation for economies where inflation is low, as the

effects on decision rules are of second order.We relax this assumption in the

quantitative exercises of Section 5, where we allow for a small trend in marginal

costs to match trend inflation in the data.

Profit maximization. Firms choose prices to maximize the present value of

profits, subject to nominal rigidities. Each firm pays a fixed cost 𝜒𝑡 (𝑓 ) when they

adjust their price from the price charged in the previous period. As in Caballero

and Engel (2007), the fixed cost 𝜒𝑡 (𝑓 ) is the realization of a random variable, i.i.d.

across firms and time, and uniformly distributed over [0, 𝜒]. As in the CalvoPlus

model, we also assume that with probability (1 − 𝜃𝑜) the fixed cost is zero, which

implies that the firm can adjust its price for free.

We denote by 𝑝𝑜𝑡 (𝑓 ) the firm’s static target price, that is, the price it would

choose absent nominal rigidities. Under Kimball preferences, a firm’s price

elasticity of demand increases in its relative price (𝑝𝑡 (𝑓 ) − 𝑝𝑡 ), which makes the

desired markup decrease in relative prices. In Appendix A, this implies that 𝑝𝑜𝑡 (𝑓 )
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is given by the sum of the steady-state (log) markup, 𝜇, and a convex combination

of the firm’s nominal marginal cost and the price index:

𝑝𝑜𝑡 (𝑓 ) = 𝜇 + (1 − Ω)𝑚𝑐𝑡 (𝑓 ) + Ω(𝑝𝑡 + 𝜑𝑡 (𝑓 )), (2)

where the price index accounts for strategic complementarities in price setting.

The scalar Ω ∈ [0, 1) captures the strength of such complementarities. The taste

shock 𝜑𝑡 (𝑓 ) shows up in the target price as noise.

Following Alvarez et al. (2023), we take a quadratic approximation of the

per-period profit function around the static optimum 𝑝𝑡 (𝑓 ) = 𝑝𝑜𝑡 (𝑓 ). We define

the price gap:

𝑥𝑡 (𝑓 ) ≡ 𝑝𝑜𝑡 (𝑓 ) − 𝑝𝑡 (𝑓 ).

Normalizing by steady-state profits then yields the following loss function that

measures the cost of deviations of the price from the target:

Π𝑡 (𝑓 ) ≈ −𝜎 (𝜎 − 1)
2(1 − Ω)

(
𝑥𝑡 (𝑓 )

)
2

,

where 𝜎 is the steady-state price elasticity of demand and steady-state profits

are equal to 1/𝜎 . Note how the weight on the loss function is increasing

in the complementarity parameter Ω. This is due to the fact that strategic

complementarities increase the curvature of the profit function, and therefore

raise the firm’s desire to keep the price close to the target relative to the cost of

adjustment.

Let I𝑡 (𝑓 ) be an indicator function that equals one if the firm adjusts its price

and zero otherwise. Then, the value of the firm normalized by steady-state profits

is given by:

𝑉𝑡 (𝑓 ) = max

{ 𝑥𝑡 (𝑓 ) , I𝑡 (𝑓 ) }∞𝑡=0

E0

∑︁
𝑡=0

𝛽𝑡
{
Π𝑡 (𝑓 ) − 𝜒𝑡 (𝑓 ) · I𝑡 (𝑓 )

}
.

The optimal pricing policy boils down to determining a probability of price

adjustment, denoted by ℎ𝑡 (𝑓 ), and, conditional on adjustment, an optimal reset

gap for 𝑥★𝑡 :

𝑥★𝑡 ≡ 𝑝𝑜𝑡 (𝑓 ) − 𝑝★𝑡 (𝑓 ),
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which captures the difference between the static target price and 𝑝★𝑡 , the (dynamic)

reset price set by a firm that decides to adjust its price.
3

As is standard in state-dependent models, the solution of the firm problem

has a “Ss flavor”. As we shall discuss, it is convenient to define the firm’s “ex ante”

price gap in period 𝑡 , 𝑥′𝑡−1
(𝑓 ), which captures the difference between the target

price and the price chosen by the firm in the previous period:

𝑥′𝑡−1
(𝑓 ) ≡ 𝑝𝑜𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 ) (3)

𝑥′𝑡−1
(𝑓 ) = 𝑥𝑡−1(𝑓 ) + (1 − Ω) (𝑔𝑡 + 𝜀𝑡 (𝑓 )) + Ω(𝑝𝑡 − 𝑝𝑡−1).

The second line follows from replacing 𝑝𝑜𝑡 (𝑓 ) using Equation (2), replacing𝑚𝑐𝑡 (𝑓 )
using Equation (1), and then using the expressions describing the processes for the

aggregate and idiosyncratic components of𝑚𝑐𝑡 (𝑓 ).
The ex ante price gap 𝑥′𝑡−1

(𝑓 ) is measured before the firm decides whether

to adjust its price (ergo, the “ex ante”), but incorporates the realization of all

time 𝑡 shocks through their impact on 𝑝𝑜𝑡 (𝑓 ). Here 𝜀𝑡 (𝑓 ) ≡ 𝜁𝑡 (𝑓 ) + Ω
1−Ω𝜑𝑡 (𝑓 )

denotes a composite i.i.d. idiosyncratic shock, which combines the idiosyncratic

technology and taste shocks. Similarly to the aggregate shock, 𝑔𝑡 , we assume that

the composite idiosyncratic shock is drawn from a mean-zero distribution with

symmetric, uni-modal, and continuously differentiable density. Finally, due to

pricing complementarities, the inflation rate 𝑝𝑡 −𝑝𝑡−1, enters the price gap because

it affects the evolution of competitors’ prices.

Let ℎ𝑡 (𝑥′𝑡−1
) be the probability that a firm adjusts the price at 𝑡 conditional

on its ex ante price gap. Then the solution to the firm’s problem can be expressed

as a function of the ex ante price gap:

𝑝𝑜𝑡 (𝑓 ) − 𝑝𝑡 (𝑓 ) = 𝑥𝑡 (𝑓 ) =

𝑥★𝑡 w. p. ℎ𝑡 (𝑥′𝑡−1

)

𝑥′𝑡−1
(𝑓 ) w.p. 1 − ℎ𝑡 (𝑥′𝑡−1

).
(4)

Firms adjust their price with probability ℎ𝑡 (𝑥′𝑡−1
). Upon adjustment, they set

3
Note that the optimal reset gap does not have an 𝑓 subscript because, to a first order

approximation, the idiosyncratic shocks, 𝜁𝑡 (𝑓 ) and 𝜑𝑡 (𝑓 ), enter both prices in an identical way

and therefore cancel out once we take the difference. Important for this result is the assumption

that idiosyncratic shocks evolve as a random walk.
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their price to 𝑝★𝑡 (𝑓 ). If they do not adjust their price, they keep their gap at

𝑥′𝑡−1
(𝑓 ). Thus, as in the standard “Ss” framework, the adjustment probabilities

are endogenous variables and will depend on the distance between the optimal

reset gap 𝑥★𝑡 and the price gap 𝑥′𝑡−1
(𝑓 ). We now characterize the optimal reset

probability and the optimal reset gap.

Probability of price adjustment. Let 𝑉 𝑎
𝑡 (𝑓 ) be the firm’s value if it resets its

price to 𝑝★𝑡 and 𝑉𝑡 (𝑥′𝑡−1
(𝑓 )) its value if it does not. As we show below, the former

depends on 𝑥★𝑡 (𝑓 ) while the latter is a function of 𝑥′𝑡−1
(𝑓 ).

The probability that a firm adjusts its price positively depends on the gap

between the two values. Specifically, dropping the firm index to ease notation,

given the randommenu cost and the random possibility of a free-price adjustment,

ℎ𝑡 (𝑥′𝑡−1
)—also known as the generalized hazard function (GHF)—is given by:

ℎ𝑡 (𝑥′𝑡−1
) = (1 − 𝜃𝑜) + 𝜃𝑜 · Pr(𝑉 𝑎

𝑡 − 𝜒𝑡 ≥ 𝑉𝑡 (𝑥′𝑡−1
))

= (1 − 𝜃𝑜) + 𝜃𝑜 · min

{
𝑉 𝑎
𝑡 −𝑉𝑡 (𝑥′𝑡−1

)
𝜒

, 1

}
,

where the second line uses the assumption that the distribution of the menu cost

is uniform. The expression above shows that the probability of price adjustment

in a given period, ℎ𝑡 (𝑥′𝑡−1
), depends, among other things, on its ex ante price gap

𝑥′𝑡−1
(𝑓 ). Under our assumption that if 𝑝★𝑡 is approximately equal to 𝑝𝑜𝑡 (which, aswe

show later, is approximately true in the data), then ℎ𝑡 (0) = (1−𝜃𝑜), the probability
of a free price adjustment. Also, observe that, as the upper bound for the menu

costs 𝜒 goes to infinity, the adjustment frequency becomes exogenous because it

converges to (1 − 𝜃𝑜). Thus, as a limiting case, the model nests a time-dependent

Calvo model parameterized by 𝜃𝑜 .

Optimal reset gap. We now characterize 𝑉𝑡 (𝑥′𝑡−1
), 𝑉 𝑎

𝑡 , and, therefore, 𝑥
★
𝑡 . The

value of the firm in case of no adjustment is given by:

𝑉𝑡 (𝑥′𝑡−1
) = Π𝑡 (𝑥′𝑡−1

) + 𝛽 E𝑡

{
ℎ𝑡+1(𝑥′𝑡 ) ·𝑉 𝑎

𝑡+1
+

(
1 − ℎ𝑡+1(𝑥′𝑡 )

)
·𝑉𝑡+1(𝑥′𝑡 )

}
.
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It is a function of current profits Π𝑡 , evaluated at the ex ante price gap 𝑥′𝑡−1
(𝑓 ),

and of the discounted expected continuation value. The latter depends on the

probability of adjustment at time 𝑡 + 1, ℎ𝑡 (𝑥′𝑡 ). The value of the firm conditional

on adjusting is the optimized value of 𝑉 with respect to the reset price 𝑝★𝑡 :

𝑉 𝑎
𝑡 = max

𝑝★𝑡

𝑉𝑡 (𝑝𝑜𝑡 (𝑓 ) − 𝑝★𝑡 )

or, equivalently, the optimal reset gap 𝑥★𝑡 solves the first-order condition:

𝑉 ′
𝑡 (𝑥★𝑡 ) = 0.

Under our assumptions of no trend inflation and a quadratic profit function,

𝑥★𝑡 ≈ 0 (see, e.g., Alvarez et al. 2016). The absence of trend inflation implies

that the statically optimal price provides a good approximation of the dynamic

optimal price (𝑝★𝑡 (𝑓 ) ≈ 𝑝𝑜𝑡 (𝑓 )). If there are no strategic complementarities, the

approximation is exact.
4

For our purposes, this result has important practical

implications. Our data allow us to construct a measurable counterpart of the ex

ante price gap 𝑥′𝑡−1
(𝑓 ) as a simple function of observables, as Equations 2 and

3 suggest, which allows us to directly test the implications of the model in the

microdata. In the analytical exercises that follow, we assume that 𝑥★𝑡 (𝑓 ) ≈ 0. In

Section 5, we verify numerically that this is indeed a good approximation.

Aggregate inflation. Next, we describe the implications of firm-level price

adjustment for aggregate inflation. Given the solution of the firm’s problem in

Equation (4) and using the formula for the price index (Equation (2.1)), we can

4
Intuitively, under our assumptions, the combined shocks that affect firms’ pricing decisions

(i.e., the sum of aggregate and idiosyncratic shocks) is a highly persistent variable that

approximately evolves as a randomwalk. Therefore, the optimal price 𝑝★𝑡 (𝑓 ) of the dynamic choice

problem remains very close to the static optimum 𝑝𝑜𝑡 (𝑓 ). Under strategic complementarities, the

static price moves less than the dynamic one. See Alvarez et al. (2023) for a full treatment of menu

cost models with strategic complementarities.
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express aggregate inflation 𝜋𝑡 as:

𝜋𝑡 =

∫ (
𝑝𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )

)
𝑑 𝑓 =

∫
ℎ𝑡 (𝑥 ′𝑡−1

(𝑓 )) ·
(
𝑝★𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )

)
𝑑 𝑓

=

∫
ℎ𝑡 (𝑥 ′𝑡−1

(𝑓 )) 𝑑 𝑓 ·
∫ (

𝑝★𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )
)
𝑑 𝑓 + Cov

(
ℎ𝑡 (𝑥 ′𝑡−1

) , (𝑝★𝑡 − 𝑝𝑡−1)
)

(5)

≈
∫

ℎ𝑡 (𝑥 ′𝑡−1
(𝑓 )) 𝑑 𝑓 ·

∫ (
𝑥 ′𝑡−1

(𝑓 )
)
𝑑 𝑓 + Cov

(
ℎ𝑡 (𝑥 ′𝑡−1

) , 𝑥 ′𝑡−1

)
. (6)

The first line shows that, to a first-order approximation, aggregate inflation is an

average of firm-level price adjustments, which can be expressed as the product of a

firm’s adjustment probability and its price change conditional on adjustment. The

second line decomposes inflation into (i) the product of the average frequency

of price adjustment and the average price adjustment of adjusters, and (ii) the

covariance between the variables. The last line uses the assumption that 𝑝★𝑡 (𝑓 ) ≈
𝑝𝑜𝑡 (𝑓 ) to express aggregate inflation as a function of moments of the distribution

of the ex ante price gaps (𝑥′𝑡−1
).

The first term in Equation (5) states that inflation depends on both

the average price gap and the average frequency of price adjustment. With

state-dependent pricing, the adjustment probability is an endogenous object that,

as we will see, increases non-linearly with the absolute value of the price gap.

With Calvo pricing, the adjustment probability is fixed and constant across firms.

Price adjustment is a linear function of the price gap, and inflation is equal to the

product of the constant adjustment frequency and the average price gap.

As in Caballero and Engel (2007) and, more recently, Karadi et al. (2021),

a “selection effect” increases the degree of monetary neutrality in the economy.

This is captured by the covariance term in Equation (5). Firms that are more

likely to adjust are also those that change their prices the most (conditional on

adjustment). That is, the gap between 𝑝★𝑡 (𝑓 ) and 𝑝𝑡−1(𝑓 ) positively co-moves with

𝑥′𝑡−1
and therefore with ℎ(𝑥′𝑡−1

). Thus, the selection effect positively contributes to

generating aggregate inflation.
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2.2 Discussion and testable implications

Price gaps and the generalized hazard function. To develop some intuition

on firm’s pricing decisions, we use of a diagram originally presented in Caballero

and Engel (2007) describing the adjustment process in the stationary equilibrium.

Figure 2: Generalized Hazard Function and distribution of price gaps
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Notes. This figure plots the probability density function of price gaps, 𝑓 (𝑥 ′𝑡−1
), against the

Generalized Hazard Function (GHF), ℎ(𝑥 ′𝑡−1
), evaluated at the steady state of the model.

In Figure 2, the horizontal axis is the density function of the ex ante price

gap, denoted by 𝑓 (𝑥′𝑡−1
), which is uni-modal and bell-shaped. The vertical axis

reports the GHF at different points of the price gap distribution, ℎ𝑡 (𝑥′𝑡−1
). Firms in

the right (left) tail of the price gap distribution are firms that, given the realization

of 𝑝𝑜𝑡 (𝑓 ), operate with a sub-optimally low markup and therefore are more likely

to increase (decrease) their price relative to the price they changed in the previous

period. The greater concentration of price gaps near the optimum simply reflects

that a firm is more likely to adjust the further its price gap is from the optimum.

Under our quadratic approximation of the profit function and with low trend

inflation, the GHF can be approximated, up to a second order, by a quadratic

12



function of the price gap centered around 𝑥′𝑡−1
= 0.

5
Specifically, we have that:

ℎ𝑡 (𝑥′𝑡−1
(𝑓 )) ≈ (1 − 𝜃𝑜) + 𝜙 ·

(
𝑥′𝑡−1

(𝑓 )
)

2

. (7)

The GHF is U-shaped and symmetric around the point where the price gap is zero,

which corresponds to the optimum in the stationary equilibrium. At this point,

the adjustment frequency is at a minimum, corresponding to the probability of a

free price adjustment (1 − 𝜃𝑜). As price gaps widen, the adjustment frequency

monotonically increases with it. The parameter 𝜙 controls the sensitivity of the

GHF to changes in gaps (i.e., the “steepness” of the parabola).

Nonlinear price dynamics along the price gap distribution. The

endogenous nature of the probability of price adjustment is the key driver

of the nonlinear transmission of shocks into prices in state-dependent models

is. To illustrate this point, we divide the distribution of ex ante price gaps into

equally sized bins, each defined narrowly enough to ensure that the price gap

remains nearly constant within each bin. Starting from the formula for inflation

in Equation (6) and applying the quadratic approximation from Equation (7)

to substitute the hazard function, we derive the following expression, which

characterizes inflation within a bin 𝑏 as a function of the (odd) moments of the

price gap distribution:
6

𝜋𝑏 ≈ 𝜙0

𝑏
·
(
𝑥′
𝑏

)
+ 𝜙 ·

(
𝑥′
𝑏

)
3

, (8)

where 𝜋𝑏 :=
∫
𝑓 ∈𝑏

(
𝑝𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )

)
𝑑 𝑓 and 𝑥′

𝑏
:=

∫
𝑓 ∈𝑏 𝑥

′
𝑡−1

(𝑓 ) 𝑑 𝑓 measure the

average price change the average ex ante price gap (across both adjusters and

non-adjusters) that belong to a given bin 𝑏. The parameter 𝜙0

𝑏
≡

(
1 − 𝜃𝑜 + 𝜙𝜎2

𝑏

)
is

the sum of the free-adjustment probability (1−𝜃𝑜), which is common across bins,

and a term equal to the variance of the price gaps within bin 𝑏 scaled by the GHF

slope parameter (𝜙𝜎2

𝑏
). The latter captures the effect of deviations of the price gap

from zero on the adjustment frequency. It is straightforward to derive the analog

5
See Alvarez et al. (2022) for the derivation of this result and for the generalization to

asymmetric GHFs.

6
See Appendix A for the analytical derivations.
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Figure 3: Nonlinear price dynamics
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Notes. In this figure, we partition the distribution of price gaps into narrow equal-size bins (𝑏). We

plot the average ex ante price gap of each bin, 𝑥 ′
𝑏
, against the average logarithmic price change

for observations in the same bin, 𝜋𝑏 . The gray dashed line represents the fitted values from a

regression of bin-level inflation on a polynomial in the first and third orders of the average gap, as

specified by Equation (8). The weight of each bin in the regression is proportional to the number

of observations within it.

of Equation (8) in the case of a time-dependent Calvo model. Given the constant

exogenous hazard rate ℎ𝑐 = (1 − 𝜃𝑐), we have 𝜋𝑏 = (1 − 𝜃𝑐) ·
(
𝑥′
𝑏

)
.
7

The binned scatter plot in Figure 3 illustrates the relationship between price

gaps and inflation across the distribution of gaps. The gray dotted line represents

the fitted values from a regression of bin-level inflation on a polynomial in the first

and third orders of the average gap, as specified by Equation (8).

When price gaps are sufficiently close to zero, the third-order term is

negligible and the average price adjustments are directly proportional to the

average price gap. Thus, the pricing dynamics of firms that operate close to their

optimum are linear in both state- and time-dependent models. This observation

is at the core of the approximate equivalence result between the Calvo and Menu

cost models with small shocks illustrated in Gertler and Leahy (2008), Alvarez et al.

7
In a Calvo model, E[𝑝𝑡 (𝑓 ) |I𝑡 (𝑓 )] = E[𝑝𝑡 (𝑓 ) |𝑝★𝑡 (𝑓 ), 𝑝𝑡−1 (𝑓 )] = (1 − 𝜃𝑐 )𝑝★𝑡 (𝑓 ) + 𝜃𝑐𝑝𝑡−1 (𝑓 ),

where I𝑡 (𝑓 ) denotes the information set of a firm entering period 𝑡 . Using the approximation

𝑝★𝑡 (𝑓 ) ≈ 𝑝𝑜𝑡 (𝑓 ) and re-arranging we obtain the equation in the text.
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(2017), and Auclert et al. (2024).

The cubic term opens the door for nonlinear inflation dynamics. Firms at

the tails of the distribution of price gaps are more likely to adjust their prices (the

frequency effect captured by the GHF), and tend to do so more aggressively (the

selection effect discussed in Golosov and Lucas (2007)).

The impact of aggregate cost shocks. Aggregate cost shocks—i.e., shocks that

do not average out—affect the optimal reset prices of all firms in the economy,

shifting the entire distribution of price gaps. When these shocks are large, a

substantial number of firms are displaced into regions of the price gap distribution

where the cubic term becomes non-negligible. This displacement increases the

degree of monetary neutrality in the economy.

Figure 4: Large versus small aggregate cost shocks
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Notes. This figure reports the ex ante price gap distribution in steady state state (black solid line)

and after a small and a large cost shock (black dashed line).

Figure 4 illustrates this point. In the spirit of the exercise in Cavallo et al.

(2024), we shock the economy in its stationary equilibrium with an unexpected

cost shock 𝑔𝑡 > 0, which increases the marginal cost for all firms. The left panel

shows the effect of a small shock, while the right panel shows the effect of a large

shock. The solid lines represent the GHF and the distribution of ex ante price gaps

in the stationary equilibrium. The dashed lines show the post-shock distributions.
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A small shock induces a small shift in the ex ante price gap distribution

which has little or no impact on the average frequency of price adjustment.

This observations is in line with Gertler and Leahy (2008) and Auclert et al.

(2024), showing how the price dynamics generated by a state-dependent model

are observationally similarly to those generated by a time-dependent model when

the economy is hit by small shocks. By contrast, a large cost shock displaces a

sufficient number of firms far from their target price, widening the average gap

in the economy. This results in a sharp increase in the fraction of firms that want

to raise their prices and a lower fraction that wants to reduce them. On average,

this causes a non-trivial increase in the adjustment frequency, which amplifies

aggregate inflation beyond what is accounted by the increase in the average gap.

3 Data and measurement

The backbone of our empirical analysis is the dataset assembled by Gagliardone

et al. (2024). Constructed by integrating different administrative micro-datasets,

this dataset encompasses market interactions between domestic and international

competitors across manufacturing industries in Belgium. It contains information

about firms’ production decisions and a detailed snapshot of firms’ variable

production costs (labor costs and intermediates) at a business cycle (quarterly)

frequency.
8

We enhance this data set in two significant ways. First, the data in

Gagliardone et al. (2024) cover a period characterized by low and stable inflation

(1999:Q1 to 2021:Q1). We extend the time-series dimension to include the

recent inflation surge and subsequent tapering (2021:Q2 to 2023:Q4). Second, we

merge new microdata that allow us to accurately measure the frequency of price

adjustments.

8
We refer to Gagliardone et al. (2024) for details about the data sources and variable definitions.
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3.1 Prices, costs, and frequency of price adjustments

The unit of observation in our data is a firm-industry pair, where industries

are narrowly defined based on 4-digit NACE rev.2 product codes. Our final

dataset includes 5, 348 domestic firm-industry pairs, denoted by a lower-script

𝑓 , distributed across 169 manufacturing industries, denoted by lower-script 𝑖 , 18

sectors (3-digit codes) and 9 macro sectors sectors (2-digit codes). We use these

data to construct prices and cost indices, following the approach in Gagliardone

et al. (2024).

Prices. For each domestic firm, we use PRODCOM data on product-level unit

values (sales over quantity sold) to construct a firm-industry price index that

aggregates the changes in the domestic prices across the different products of firm

𝑓 in industry 𝑖:

𝑃𝑓 𝑡

𝑃𝑓 𝑡−1

=
∏
𝑝∈P𝑓 𝑡

(
𝑃𝑝𝑡

𝑃𝑝𝑡−1

)𝑠𝑝𝑡
, (9)

where P𝑓 𝑡 represents the set of 8-digit products manufactured by the firm, 𝑃𝑝𝑡

is the unit value of product 𝑝 in P𝑓 𝑡 , and 𝑠𝑝𝑡 is a Törnqvist weight given by the

average within-firm sales share of the product between 𝑡 and 𝑡 − 1, 𝑠𝑝𝑡 ≡
𝑠𝑝𝑡+𝑠𝑝𝑡−1

2
.

Using data from PRODCOM and the customs declarations filed by foreign

firms exporting to Belgium, we construct firm 𝑓 competitors’ price index by

aggregating the domestic price changes of products sold by domestic and

international competitors selling in the same industry as 𝑓 (F𝑖 ):

𝑃
−𝑓
𝑖𝑡

𝑃
−𝑓
𝑖𝑡−1

=
∏

𝑘∈F𝑖\𝑓

(
𝑃𝑘𝑡

𝑃𝑘𝑡−1

)𝑠−𝑓
𝑘𝑡

, (10)

where 𝑠
−𝑓
𝑘𝑡

≡ 1

2

(
𝑠𝑘𝑡

1−𝑠𝑓 𝑡 +
𝑠𝑘𝑡−1

1−𝑠𝑓 𝑡−1

)
represents the Törnqvist weight assigned to

competitor 𝑘 given by the average residual revenue share of competitor 𝑘 in the

industry (excluding firm 𝑓 ’s revenues).

Following the standard methodology adopted by national statistical

agencies, we calculate aggregate producer price inflation for the Belgian

manufacturing sector as Törnqvist price index, averaging the quarterly changes
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in domestic firms’ prices and weighting them by the firms’ Törnqvist weights

𝑠 𝑓 𝑡 ≡
𝑠𝑓 𝑡+𝑠𝑓 𝑡−1

2
:

𝜋𝑡 =
∏
𝑓

(
𝑃𝑓 𝑡

𝑃𝑓 𝑡−1

)𝑠𝑓 𝑡
− 1. (11)

Finally, we recover the times series of firms’ prices (in levels) by

concatenating the indexes in Equation (9), 𝑃𝑓 𝑡 = 𝑃𝑓 0

∏𝑡

𝜏=𝑡0

𝑓
+1

(
𝑃𝑓 𝜏/𝑃𝑓 𝜏−1

)
, where

𝑡0

𝑓
denotes the first quarter when 𝑓 appears in our data. We set the base period

𝑃𝑓 0 to one for all firms. As discussed in the following section, this normalization is

one rationale for removing firm-fixed effects from our empirical measures of price

gaps. The series of competitors’ prices, 𝑃𝑓 𝑡 , is constructed similarly, concatenating

the indexes in Equation (10).

Costs. To derive a firm-level marginal cost index, we assume a cost structure in

which the nominal marginal cost of a firm is proportional to its average variable

costs: 𝑀𝐶𝑛
𝑓 𝑡

= (1 + 𝜈 𝑓 )𝐴𝑉𝐶 𝑓 𝑡 . The coefficient 𝜈 𝑓 captures the curvature of the

short-run cost function, and it is inversely related to the firm’s short-run returns

to scale in production (𝜈 𝑓 ≡ 1/𝑅𝑆 𝑓 − 1). Using the definition of average variable

costs (total variable costs over output, 𝑇𝑉𝐶𝑛
𝑓 𝑡
/𝑌𝑓 𝑡 ) and applying a logarithmic

transformation, we have that firm-level log-nominal marginal cost is given by:

𝑚𝑐𝑛
𝑓 𝑡
= (𝑡𝑣𝑐𝑛

𝑓 𝑡
− 𝑦𝑓 𝑡 ) + ln(1 + 𝜈 𝑓 ) (12)

In the data, we measure total variable costs as the sum of intermediate costs

(materials and services purchased) and labor costs (wage bill), both of which are

available at the firm-quarter level.We compute a quantity index by dividing a firm’s

domestic revenues by its domestic price index.
9
Firm-specific short-run returns to

scale are not directly observable in the data. Therefore, to the extent that individual

firms’ production technologies deviate from constant returns to scale (𝜈 𝑓 ≠ 0),

9
Specifically, we compute 𝑌𝑓 𝑡 = (𝑃𝑌 )𝑓 𝑡/𝑃𝑓 𝑡 , where 𝑃𝑓 𝑡 denotes the firm-quarter domestic

price index. For single-industry firms, 𝑃𝑓 𝑡 coincides with the firm-industry price index 𝑃𝑓 𝑡 . For

multi-industry firms, we construct 𝑃𝑓 𝑡 as an average of the different firm-industry price indexes

using as weights the firm-specific revenue shares of each industry. As discussed in Gagliardone

et al. (2024), the lion’s share of the firms in our sample operate in only one industry, and the main

industry accounts for the lion’s share of sales of multi-industry firms.
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our measure of log-marginal costs would be missing an additive constant. This

provides a second rationale for removing firm-fixed effects from our measure of

price gaps.

Frequency of Price Adjustment. The frequency of price adjustments is a

crucial variable to characterize the nature of nominal rigidity in the data. To

accurately measure this variable, we use additional micro-level records from the

National Bank of Belgium Business Survey (NBB-BS). This survey interviews a

representative sample of firms within each manufacturing industry on a monthly

basis, asking about their pricing decisions. In a manner similar to the official

Producer Price Index (PPI) data collection, the survey asks firms if they increased,

decreased, or left unchanged the price of a given product in their portfolio. This

allows us to define a Boolean variable that takes value one if, within a given

quarter, the firm reports adjusting prices at least once relative to the previous

month. Averaging the boolean variables across firms and industries in any given

quarter, we compute the (exact) average frequency of price adjustment for the

manufacturing sector. Mirroring the notation in themodel, we denote this variable

by
¯ℎ𝑡 .

This variable also helps us to clean for spurious price changes in the

micro data. Our measure of prices is based on product-level unit values. Due

to small measurement error, this measure tends to overstate the frequency of

small price changes, as shown by Eichenbaum et al. (2014).
10

To address this

measurement problem, we combine the firm-level price changes with information

on the frequency of price adjustment from the NBB-BS to define firm-specific

thresholds, 𝜅+ and 𝜅−, such that a small price adjustment below these thresholds

is treated as no price change:

I+
𝑓 𝑡
= 0 ⇐⇒ Δ𝑝 𝑓 𝑡 < 𝜅+

ℎ
·𝑉𝑎𝑟 𝑓 (Δ𝑝 𝑓 𝑡 ) if Δ𝑝 𝑓 𝑡 > 0

10
For example, data from various countries reveals that the share of regular price changes that

are smaller than 1 percent in absolute value is 3 to 4 percent (see, e.g., Cavallo and Rigobon 2016).

This figure is 30 percent in our data, suggesting that many of the small price changes are spurious

price changes.
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I−
𝑓 𝑡
= 0 ⇐⇒ Δ𝑝 𝑓 𝑡 > −𝜅−

ℎ
·𝑉𝑎𝑟 𝑓 (Δ𝑝 𝑓 𝑡 ) if Δ𝑝 𝑓 𝑡 < 0

To account for different degrees of upward and downward nominal rigidity in

the data, we set the thresholds 𝜅+ = 0.75 and 𝜅− = 0.87 to separately match the

average frequency of upward and downward price changes measured using the

NBB-BS micro data:

∑
𝑡

∑
𝑓 I

+
𝑓 𝑡
= ¯ℎ+ and

∑
𝑡

∑
𝑓 I

−
𝑓 𝑡
= ¯ℎ−, where ¯ℎ+ + ¯ℎ− = ¯ℎ.11

3.2 Measurement of price gaps

The availability of high-frequency data on firm-level prices, marginal costs, and

competitors’ price indexes enables us to construct an empirical counterpart of the

firm-level ex ante price gaps defined in Equation (3):

𝑥′
𝑓 𝑡−1

= 𝑝𝑜
𝑓 𝑡
− 𝑝 𝑓 𝑡−1.

Guided by our theoretical framework, we construct a proxy of firms’ target prices

as a convex combination of the firm’s ownmarginal cost and its competitors’ price

index: 𝑝𝑜
𝑓 𝑡
= (1−Ω)𝑚𝑐𝑛

𝑓 𝑡
+Ω𝑝−𝑓𝑡 . We calibrate Ω to 0.5 to match the micro estimate

in Gagliardone et al. (2024). As we discussed in Section 2, when 𝑝𝑜
𝑓 𝑡

and 𝑝★
𝑓 𝑡

are sufficiently close to each other, 𝑥′𝑡−1
(𝑓 ) provides information on inefficiencies

driven by nominal rigidities. A positive ex ante price gap indicates that a firm is

operating with a markup below the profit-maximizing one and, therefore, absent

nominal rigidities, would adjust its price upward.

3.3 Harmonization and data cleaning

We apply the following data cleaning steps and harmonization procedures to the

empirical distributions of price changes and price gaps. To mitigate the noise in

price changes due to the use of unit values, we set to zero the price changes that

are less than 1 percent in absolute value. Note that this adjustment does not affect

our measure of the average frequency of price adjustments, which is computed

precisely using the NBB-BS data on price adjustments, as discussed above. To

11
See Karadi et al. (2021) and Luo and Villar (2021) for evidence of asymetric upward and

downward rigidity.
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remove outliers, we trim observations at the top and bottom 2 percent of the price

changes and the price gaps distribution.

Next, we need to address some differences between our empirical measure

of price gaps and its theoretical counterpart in Equation (3). First, our measure

of 𝑝𝑜
𝑓 𝑡

does not account for the realization of unobservable idiosyncratic taste

shocks (𝜑 𝑓 𝑡 ). Although such shocks average out, they also introduce measurement

error that weakens the connection between price gaps and price changes, at

the individual firm’s level. Second, given our measures of prices and marginal

costs, we can only identify firm’s reset gaps up to an additive constant, which

captures a combination of unobserved steady-state markups (𝜇 in Equation

(3)), unobserved deviations from constant short-run returns to scale affecting

marginal costs (ln(1 + 𝜈 𝑓 ) in Equation (12)), and the normalization of price levels.

Third, for analytical tractability, we developed a one-sector model assuming

zero trend inflation. In reality, inflation exhibits a small trend (approximately

0.6 percent quarter-on-quarter, before the 2021 surge), which varies between

industries. We also observe strong seasonal patterns in nominal variable costs,

which are higher in the second and fourth quarters, on average. To address

these differences and align the empirical and theoretical price gap measures, we

harmonize the price gaps by removing firm-specific and industry-specific calendar

quarter averages. For consistency, we apply the same harmonization to the

distribution of price changes. By doing so, we account for firm-specific intercepts,

industry-specific seasonal patterns in nominal costs, and trend inflation. It also

mitigates measurement errors in price changes and reset gaps caused by the use

of unit values for price measurements and inaccuracies in measuring marginal

costs.

3.4 The joint distribution of price changes and price gaps:

Summary statistics

Table 1 presents summary statistics of the distribution of firm-level log price

changes, 𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1, and ex ante price gaps, 𝑥′
𝑓 𝑡−1

.
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The first four columns present moments describing the distribution of

price changes. Panel a focuses on the 1999–2019 period, characterized by low

inflation and, with the exception of the global financial crisis, the absence of

large aggregate shocks. Drawing an analogy with our model, we view this

period as representing the economy in its steady-state distribution. During this

period, the (harmonized) average price change is close to zero, which implies that

inflation is generally aligned with the long-term industry trend (approximately

0.5 percent quarter-on-quarter, on average). The standard deviation of price

changes is 0.11 and the average frequency of price changes is
¯ℎ = 0.29. The latter

implies that, in a low inflation environment, firms adjust their prices every 3 to 4

quarters, on average. Panel b presents the same statistics for the period 2020–2023,

characterized by high inflationary pressure and subsequent tapering. During this

period, we observe a quarterly inflation rate that is on average 1 percentage point

higher than the trend. At the same time, we observe a substantial increase in the

frequency of price changes by 10 percentage points, on average.

Table 1: Summary statistics of price changes and price gaps

Price change (𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1) Ex ante price gap (𝑥 ′
𝑓 𝑡−1

)

Panel a: Time period 2000-2019

Mean Std. Freq. Adj. Kurt. Mean Std. Kurt.

-0.00 0.11 0.29 5.79 -0.00 0.14 2.96

Panel b: Time period 2020-2023

Mean Std. Freq. Adj. Kurt. Mean Std. Kurt.

0.01 0.12 0.38 5.00 0.01 0.15 2.81

Number of observations: 133,401

Number of firm-industry pairs: 5,348

Number of firms: 4,811

Notes. This table reports the summary statistics of the distributions of price changes (𝑝 𝑓 𝑡−1 − 𝑝 𝑓 𝑡 ),

and ex ante price gaps ( 𝑥 ′
𝑓 𝑡−1

) before (panel a) and after the inflation surge (panel b).

The fourth column reports the kurtosis of price changes. We calculate this
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statistic following the approach in Klenow and Kryvtsov (2008), which involves

standardizing the distribution of price changes by removing firm-level means and

scaling by firm-level standard deviations. The estimated kurtosis is on the high end

of the distribution of estimates found in the literature. This is likely due to the high

sensitivity of this statistic to measurement error and to unobserved heterogeneity,

which we are not able to fully account for.
12

Figure 5: Empirical distribution of ex ante price gaps

D
e
n
s
i
t
y
(
%
)

0

1

2

3

4

D
en

si
ty

 (%
)

-.5 -.4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5
Ex-ante price gap (x't)Ex ante price gap (𝑥 ′𝑡−1

)

Notes. The figure presents the empirical probability density function of the price gaps, 𝑓 (𝑥 ′𝑡−1
), in

the pre-pandemic period (2000-2019).

The last three columns of Table 1 present summary statistics of the price

gap distribution. This distribution, which is typically unobserved, is of great

interest, as it contains information on inefficiencies due to the rigidities of nominal

prices. Figure 5 presents the probability density function of the price gaps, 𝑓 (𝑥′𝑡−1
),

in the pre-pandemic period. The data reveal a price gap distribution that is

unimodal, bell-shaped, and symmetric about the mean. During the inflation surge,

on average, the price gap increased by 1 percentage point relative to its long-term

trend. In line with theoretical predictions, this increase maps to the average

average price change observed over the same period.

12
To this point, Alvarez et al. (2016) shows that the empirical estimates of the kurtosis can be

biased upward by 30 percent or more if measurement error and heterogeneity are not appropriately

filtered.
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4 Micro evidence of state dependent pricing

Guided by the theoretical results presented in Section 2, we design direct empirical

tests of key model predictions that relate the micro-level pricing dynamics to the

underlying price gaps distribution in both low- and high-inflation regimes. These

exercises provide strong evidence of the state-dependent nature of firm pricing

decisions.

4.1 The empirical Generalized Hazard Function

The relationship between price gaps and the frequency of price adjustments

is the watershed between models featuring state- and time-dependent pricing.

State-dependent models imply a monotonically increasing relationship between

a firm’s probability of price adjustments (captured by the GHF) and the absolute

value of its price gap. In contrast, the two variables are independent in

time-dependent models, resulting in a flat GHF.

We test these predictions in the microdata using information on the

frequency of price adjustment and price gaps. We focus on the pre-pandemic

period (2009–2019). Throughout the paper, we treat this period as a representation

of the economy in steady state, when aggregate shocks are zero and the only

variation in gaps is driven by the realization of idiosyncratic cost and markup

shocks. In Figure 6, the black line represents the probability density function of

price gaps. The red line is the empirical analog of the theoretical GHF, measuring

the fraction of firms that adjust their prices for each bin of the distribution of price

gaps.

The data reveal a strong connection between the size and magnitude of price

gaps and the frequency of price adjustment. A greater deviation from 𝑥′𝑡−1
= 0

induces a larger fraction of firms to adjust their prices, with a striking resemblance

to the theoretical GHF of state-dependent pricing models. The shape of the

empirical generalized hazard function is equally noteworthy. The GHF displays

a steeper slope to the right, indicating an asymmetry. This asymmetry suggests
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Figure 6: Empirical GHF and distribution of ex ante price gaps
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Notes. The figure plots the empirical probability density function of the ex ante price gaps 𝑓 (𝑥 ′𝑡−1
)

(black line) against the empirical GHF, ℎ(𝑥 ′𝑡−1
) (red line). The black dotted line is the fitted value

obtained from a cross-sectional regression of the frequency of price adjustment of a given bin (𝑏)

on a constant and the square of the average price gap of the same bin, as dictated by Equation (7).

In the regression, we weight each bin by the number of observations it counts.

that firms’ incentives to adjust prices are greater when their prices are too low

(i.e., when 𝑥 is positive, resulting in a realized markup that is too low) compared

to when their prices are too high.

As discussed in Section 2, under some assumptions, we can approximate the

GHF parametrically as a quadratic function of the price gap, as shown in Equation

(7). To empirically evaluate this expression, we partition the distribution of price

gaps into 500 narrowly defined and equally-sized bins (𝑏). We then estimate a

cross-sectional regression of the frequency of price adjustment for each bin, ℎ𝑏 ,

on a constant term and the square of the average price gap for the same bin, 𝑥′
𝑏
:

ℎ𝑏 = 𝑎0 + 𝑎1 · (𝑥′𝑏)
2 + 𝜈𝑏,

where 𝜈𝑏 is a white noise. The black dotted line in Figure 6 represents the fitted

values obtained from the model. In the regression, we weight each bin by the

number of observations it counts. As we can see, a simple quadratic polynomial

fits the data quite well, despite the asymmetry between upward and downward
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adjustment probabilities. Note that, in the vicinity of 𝑥′𝑡−1
= 0, the intercept

estimate (𝑎0) provides an estimate of the parameter 𝜃𝑜 , which controls free price

adjustments. This mapping will prove useful for calibration purposes.

4.2 Nonlinear price dynamics along the price gap

distribution

In our next exercise, we document the nonlinear cost-price dynamics resulting

from the state dependence of firms’ policies. To illustrate this point, we make

use of Equation (8), which links inflation to (odd) moments of the price gap

distribution.

Figure 7: Nonlinear price dynamics
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Notes. This figure presents a scatter plot of the average ex ante price gap of a given bin of the price

gap distribution, 𝑥 ′ (𝑏), against the average logarithmic price change belonging to the same bin,

𝜋 (𝑏). Bins are defined partitioning the price gap distribution into 500 narrowly defined intervals

of of width ≈ 0.002. The black dashed line depicts a linear fit of price changes on price gaps,

𝜋 (𝑏) = 𝑎0+𝑎1 ·𝑥 ′ (𝑏), estimated using only bins that belong to the center of the price gap distribution

(from the 25th to the 75th percentile). We report in black the estimated slope (𝑎1). The red dashed

line is the fit of a polynomial in the 1 first and 3 rd order of the gap, 𝜋𝑏 = ˆ𝑏1 ·
(
𝑥 ′
𝑏

)
+ ˆ𝑏2 ·

(
𝑥 ′
𝑏

)
3

,

estimated using bins throughout the entire distribution of price gaps. We report in red the slope of

the polynomial fit in the center and in the tails of the distribution of price gaps. In all regressions,

each bin is weighted by the number of observations it counts.

Again we sort observations into narrowly defined, equally sized bins
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spanning the entire price gap distribution. In Figure 7we plot the average price gap

for a given bin (𝑥′
𝑏
, x-axis) against the average price change for observations falling

within the same bin (𝜋𝑏 , y-axis). We then estimate the following cross-sectional

regressions, which constitute the sample analog of Equation (8):

𝜋𝑏 = 𝑏1 ·
(
𝑥′
𝑏

)
+ 𝑏2 ·

(
𝑥′
𝑏

)
3 + 𝜂𝑏

The coefficient𝑏1 captures the average price change associate with a small increase

in the price gap. In Appendix A we show that 𝑏1 converges in probability to

the average frequency of price adjustment in the regression sample and that 𝑏2

converges in probability to 𝜙 , the curvature parameter of the GHF.

By comparing the patterns in Figure 3 to their theoretical counterpart in

Figure 7 we can see just how closely the microdata align with the predictions of

the model. Consider first the bins located at the center of the distribution (bins

covering the 25th to 75th percentiles). Observations in this range are characterized

by relatively low gaps, whichmeans relatively small deviations of their prices from

the target price. We can therefore think of them as representing the distribution

of the economy in “normal times,” with low inflation and small aggregate shocks.

For these observations, the cubic term is small and can be ignored, which implies

that the relationship between inflation and price gaps is approximately linear, as

in Calvo model. This result echoes those in Gertler and Leahy (2008), Alvarez et al.

(2017), and Auclert et al. (2024), which highlight how, in “normal times,” the price

dynamics generated by a state-dependent model resemble those generated by a

time-dependent model, up to first-order. The linearity of the relationship between

price gaps and price changes is also at the core of the identification argument

in Gagliardone et al. (2024), which used microdata to identify the slope of the

cost-based New Keynesian Philips curve in a low inflation environment. To this

point, the estimate of the slope coefficient is
ˆ𝑏0 = 0.28 (or 0.29, if we ignore the

cubic term), which almost exactly matches the frequency of price adjustments

observed in our sample in low inflation environment (Table 1, panel a).

Now consider the relationship between price gaps and price changes across

the entire price gap distribution, including its tails. The red dashed red line in
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Figure 7 represents the projection of inflation on a the price gap and the cubic

of the price gap of each bin. The micro data offer the opportunity to appreciate

the non-linearities generated by the state-dependent nature of price adjustments.

When price gaps are wide (for example, when a large aggregate shock hits the

economy), the connection between movements in gaps and movements in prices

increases substantially because of the presence of the cubic term. In fact, the

gradient between price gaps and price changes steepens by 25 percent (from 0.28

to 0.36) as we move from the center to the tails of the price gap distribution.

4.3 Price gaps and price changes conditional on adjustment

So far, we have studied the micro-level relationship between gaps and pricing,

averaging across both firms that adjust and those that don’t. We now focus our

attention on the former group of firms. The theory predicts that, conditional on

adjusting, the firms set 𝑝 𝑓 𝑡 = 𝑝★
𝑓 𝑡
. This implies that 𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1 = 𝑥★

𝑓 𝑡
, when

𝑝 𝑓 𝑡 ≠ 𝑝 𝑓 𝑡−1. Although we can’t measure 𝑥★
𝑓 𝑡

in the data, to the extent that 𝑝𝑜
𝑓 𝑡

provides a reasonable approximation for 𝑝★
𝑓 𝑡
, we should still observe an elasticity

of price changes with respect to ex ante price gaps, (𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1)/𝑥′𝑓 𝑡−1
, that is

approximately one. Figure 8 shows that this is indeed the case.

It presents two binned scatter plots that report, on the x-axis, the average

price gap of a given percentile of the price gap distribution of adjusters (that is,

firms for which 𝑝 𝑓 𝑡 ≠ 𝑝 𝑓 𝑡−1) and the corresponding average percentage change

in the prices of firms in the same percentile (y-axis). The left panel focuses on

the pre-pandemic period (1999–2019), and the right panel on the pandemic and

post-pandemic period (2020–2023). In each panel, the black dashed line depicts the

linear fit of price changes on price gaps across the percentiles of the distribution

of price gaps. The data indicate a gradient that is not only positive but also very

close to one, as the theory suggests. Measurement error and the approximation

of 𝑝★
𝑓 𝑡
with 𝑝𝑜

𝑓 𝑡
are likely the two main factors explaining why the gradient is not

exactly one. Interestingly, we find that the gradient is particularly steep during

the post-pandemic period. This could be due to firms being more attentive and

28



Figure 8: Price changes and price gaps, conditional on adjusting

Low inflation (1999–2019) High inflation (2020–2023)
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Notes. This figure presents a binned scatter plot of the log price change for adjusters (i.e., firms

for which 𝑝 𝑓 𝑡 ≠ 𝑝 𝑓 𝑡−1) against the ex ante price gap. Each dot marks the average price gap of a

given percentile of the price gap distribution (x-axis) and the corresponding average percentage

change in prices of firms in the same percentile (y-axis). The black dashed line depicts a liner fit of

price changes on price gaps across the percentiles of the distribution of price gaps. The regression

sample excludes the bottom and top 5 percentiles of the price gap distribution, to minimize the

impact of outliers.

reactive to movements in costs when inflation is high, as shown by Gagliardone

and Tielens (2024) using a model with state-dependent information frictions.

4.4 Large cost shocks and shifts in the price gaps distribution

We discussed in Section 2 how small, idiosyncratic shocks generate dispersion in

the price gap distribution, while large aggregate shocks shift the entire distribution

of price gaps, significantly increasing the fraction of firmswhowant to adjust their

prices (Figure 4). The drastic surge and subsequent normalization of production

costs observed in the post-pandemic period allows us to directly test this model’s

prediction in the microdata.

In Figure 9, the black solid line represents the distribution of the price gaps

before the pandemic. In panel a, the red dashed line represents the distribution

in 2022:Q2. During this quarter, on average, firms’ marginal costs increased by
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Figure 9: Impact of a aggregate cost shocks on the price gap distribution and

frequency of price adjustment

Panel a: Positive aggregate cost shock
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Panel b: Negative aggregate cost shock
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Notes. This figure presents the empirical probability density function of the ex ante price gaps in

the pre-pandemic period, 1999–2019, (black solid line) and in two snapshots of the post-pandemic

period, in 2022:Q2 (red dashed line, panel a) and 2023:Q4 (red dashed line, panel b). The solid and

dashed vertical lines mark the average price gap of the different distributions. The horizontal lines

report the average frequency of price adjustment in the pre-pandemic period (black solid line) and

in 2022:Q2 and 2023:Q4 (red dashed lines).

6.2 percent relative to the previous quarter. Accordingly, and consistent with

the theoretical predictions, a cost shock of this magnitude shifts the entire price

gap distribution to the right, so that a significant number of firms’ prices are

now further away from their desired levels, resulting in a shift of the distribution
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and fatter tails. Because the shock reduces firms’ profit margins, the cost of not

adjusting is larger. Firms adjust their prices upward as more firms move to regions

of the price gap distribution where the GHF is high. Consequently, over a single

quarter, the average probability of price adjustment almost doubles relative to

the frequency observed in normal times. Once again, a time-dependent model

would not produce any of these results, as its GHF is flat and orthogonal to the

gap distribution.

In panel b, we repeat the same exercise, but now the red line represents

the distribution of price gaps in 2023:Q3. During this quarter, on average, firms’

marginal costs decreased by 3.8 percent relative to the previous quarter, as energy

prices and international supply chains began to normalize. This (negative) cost

shock shifted the price gap distribution to the left, which led to an increase in the

frequency of price adjustment as firms began to lower their prices.

This exercise also reveals that the shocks not only shifted the distribution

of price gaps but also altered its shape, thickening the tails of the distribution.

This observation suggests that, in reality, the aggregate shock due to the

hikes of intermediate costs prices affected firms in a heterogeneous way. This

heterogeneity is accounted for by our theoretical framework and it is an interesting

topic for future research.

4.5 Frequency of price adjustment across inflation regimes

In our final exercise, we connect micro- and macro-level price dynamics,

illustrating how micro-level nonlinearities manifest in nonlinear aggregate

inflation dynamics.

In Figure 1, we documented a strong comovement between the time series

of aggregate inflation and the average frequency of price adjustments. This

pattern is particularly evident during the post-pandemic inflation surge, where

the adjustment frequency increased from around 25 percent at the beginning of

2020 to nearly 60 percent at the peak of the surge. Figure 10 emphasizes the

nonlinear relationship between the two variables. There, we sort the different
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Figure 10: Frequency of price adjustment and inflation
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Notes. In this figure, we sort the quarters in our data (𝑡 ) according to their year-over-year

manufacturing PPI inflation (𝜋𝑡 ) and plot this variable against the average frequency of price

adjustment in the same quarter. The average frequency of price adjustment is a rolling average

of the quarterly frequency of price adjustments over the previous four quarters.

quarters according to their annual inflation rate and plot this variable against

the average frequency of price adjustment. The black dashed line represents

the linear fit between the two variables during periods of low inflation (below

10% year-over-year); the red dashed line represents the fit across both high- and

low-inflation periods. As we can see, the frequency of price adjustment hardly

responds to changes in inflation when inflation is low. Again, this suggests

that time-dependent models capture nominal rigidities well in a low-inflation

environment. However, the data show how the two variables become strongly

positively correlated in high inflation environments, as shown by Alvarez et al.

(2019) and, more recently, Cavallo et al. (2023a) and Blanco et al. (2024a).

5 Quantitative implications

Having established the close connection between theory and data, we now use

moments from the microdata to calibrate and simulate the quantitative model

presented in Section 2. We use the calibrated model to perform two types of
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quantitative exercises. In a first, more standard, set of exercises, we contrast the

dynamics of our state-dependent model to those of a standard time-dependent

Calvo model in response to small and large shocks. The second set feeds the model

a sequence of aggregate marginal costs extracted from the data and compares the

model-generated aggregate inflation series to the one observed in the data.

5.1 Calibration

We have a total of seven parameters to calibrate. We calibrate four of them to

standard values in the literature. We calibrate the elasticity of substitution between

goods 𝜎 , to 6, which implies a markup of 20 percent in the symmetric steady state

equilibrium. We set 𝛽 , the firm’s risk neutral discount factor, at 0.99. As in our

empirical analysis, we calibrate Ω = 0.5 to reflect the importance of strategic

complementarities estimated in Gagliardone et al. (2024). To align the model and

the data, we allow for a drift in the aggregate component of nominal marginal cost

(𝜇𝑔 = 0.5%), which corresponds to trend inflation rate of 1.6% year over year.

The remaining three parameters, 𝜃𝑜 , 𝜎2

𝜖 , and 𝜒 , control the degree of nominal

rigidity and state-dependency of price adjustments. The standard approach

to calibrate these parameters leverages the theoretical mapping between the

unobservable distribution of price gaps and the observable distribution of price

changes, targeting standard deviation, kurtosis, and frequency of price changes

(see, e.g., Alvarez et al. (2022), and Blanco et al. (2024a)). In theory, we could

use microdata on price changes to recover these moments. In practice, producing

unbiased empirical measures of these moments can be challenging, especially in

our context. The measurement of kurtosis is particularly problematic, as this

moment tends to be sensitive to small measurement error (Alvarez et al. 2016) and

unobserved heterogeneity (Alvarez et al. 2022), which can mechanically generate

upward bias in the measured statistic (see, e.g., Cavallo and Rigobon 2016).

To circumvent these issues, we developed an alternative calibration

procedure that does not rely on targeting the kurtosis of price adjustments.

Instead, we leverage information subsumed in the joint distribution of price
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changes and price gaps and in the empirical GHF during the pre-pandemic period.

First, we have shown strong evidence in favor of a V-shaped GHF (see Figure

6), as captured by Equation (7). We therefore calibrate the free price adjustment

parameter 𝜃𝑜 to match the frequency of price adjustment in a neighborhood of

𝑥′
𝑓 𝑡−1

≈ 0.
13

This yields an estimate of the free adjustment probability of (1 − 𝜃𝑜)=
0.20. Note that by averaging between thousands of observations in a neighborhood

of 𝑥′
𝑓 𝑡−1

≈ 0, this calibration tends to be robust to small measurement errors due

to spurious changes in unit values.

Second, when trend inflation is low (as is the case during the pre-pandemic

period) and idiosyncratic shocks are drawn from a Gaussian distribution, Alvarez

et al. (2016) show that the following identity links the average frequency of price

adjustment (
¯ℎ), the variance of the price changes, and the variance of idiosyncratic

shocks (𝜎2

𝜖 ) in steady-state:

¯ℎ · Var𝑠𝑠 (𝑝𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )) = 𝜎2

𝜖 .

We thus simulate the model assuming that the idiosyncratic shocks 𝜀𝑡 (𝑓 ) are i.i.d
draws from a Gaussian distribution N(0, 𝜎2

𝜖 ) and calibrate 𝜎2

𝜖 to 0.0036 to match

the product of the average frequency of price adjustment and the variance of price

changes reported in panel a of Table 1.

Finally, given 𝜎2

𝜖 and 𝜃𝑜 , we calibrate 𝜒 (the upper limit of the uniform

distribution from which the random menu costs are drawn) to 0.6, to allow the

model to match the frequency of price changes in the pre-pandemic period.

We conclude with two observations lending empirical support to our

calibration procedure. First, in a recent paper, Blanco et al. (2024a) show how

a standard menu costs model with single-product firms calibrated to match the

kurtosis of price changes may need unreasonably high menu costs to rationalize

the data. In our model, in steady state, menu costs amount to 1.7 percent of firm

13
We estimate the empirical analog of Equation (7), ℎ𝑏 = �

1 − 𝜃
𝑜
+ 𝜙 ·

(
𝑥 ′
𝑏

)
2

+ 𝜖𝑏 , where ℎ𝑏

and 𝑥 ′
𝑏
denote the within-bin average frequency of price adjustment and the average price gap. To

obtain more precise estimates of this parameter, we restrict the estimation sample to bins capturing

observations in the 25 to 75 percentiles of the gaps distribution and assign each bin a regression

weight equal to the share of in each observations.
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revenues, on average. This is consistent with the empirical evidence of small menu

costs documented in Levy et al. (1997) and Zbaracki et al. (2004).

Second, as discussed above, we did not target the kurtosis of price changes in our

calibration. Caveat the measurement issues discussed above, we calibrated model

displays a kurtosis of price changes that is about 25 percent lower than the one

computed in the data. This figure is consistent with the results in Alvarez et al.

(2024a), which show that the estimated kurtosis of price adjustment of French CPI

data shrinks by 30 percent once unobserved heterogeneity is controlled for.

Table 2: Calibration: Data vs model

Price change (𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1) Ex ante price gap (𝑥 ′
𝑓 𝑡−1

) Share MC

Mean Std Kurt Freq. Adj. Mean Std Kurt. Mean (%)

Data -0.00 0.11 3.23 0.29 -0.00 0.14 4.14 1.22

Menu cost 0.00 0.12 2.62 0.29 0.00 0.09 3.30 1.70

Calvo 0.00 0.12 5.21 0.29 0.00 0.12 5.21

Notes. This table reports moments of the distribution of price changes and price gaps computed

during the period 2000–2020 (panel a) and the correspondingmoments for themenu costmodel and

Calvo model, in steady-state, under our baseline calibration. As we do in the data, the model-based

moments are computed after de-meaning the distribution of price changes and ex ante price gaps.

The last column reports the average share of menu costs paid by firms as a fraction of firms’

revenues. The estimate of this moment in the data comes from Zbaracki et al. (2004).

Table 2 compares the empirical moments of the price changes (panel a) and

price gap distribution (panel b) to the corresponding moments of the menu cost

model, in steady state, under our baseline calibration. The model is able to capture

the data quite well. Notably, although we did not directly target moments of the

distribution ex ante price gaps, our simulated model displays a dispersion and a

degree of leptokurthosis that closely aligns with the empirical one.

We also consider a standard Calvo model, calibrated to match the

steady-state frequency of price adjustment observed in the data. As explained

in Section 2, our menu costs model nests the Calvo as a special case when the

maximummenu costs, 𝜒 , go to infinity and the probability of free price adjustment,

1 − 𝜃𝑜 , is re-calibrated to match the steady-state frequency of price adjustment.
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5.2 Impulse-responses to small and large aggregate shocks

We use the calibrated menu costs and Calvo models to study price dynamics

in response to large and small shocks, under state- and time-dependent

pricing. Starting from an economy in steady steady, we shock the system

with unanticipated, permanent shocks to aggregate marginal cost of different

magnitudes, 𝑔𝑡={2%, 10%, 20%}.

Figure 11: Impact of aggregate cost shocks in state- and price-dependent models
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Panel b: Time-dependent pricing (Calvo)
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Notes. This figure presents the impulse responses of inflation and frequency to aggregate cost

shocks of different magnitudes. Panel a reports the impulse response for our state-dependent

pricing model (menu costs model). Panel b reports the impulse responses for a time-dependent

model (Calvo model). The x-axis reports quarters since the shock.

Figure 11 displays the impulse response function of the frequency of price

adjustment (panel a, left) and aggregate inflation (panel a, right). All shocks

increase the optimal reset price, shifting the distribution of price gaps to the right,

thereby triggering an increase in the number of firms adjusting their prices and,
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therefore, an inflation. However, as discussed in Section 2 and empirically shown

in Section 4, large shocks lead to a significant shift in the price gap distribution,

displacing many firms in a region where the GHF is higher, generating a spike in

the frequency of price adjustment and, consequently, a rapid and substantial surge

in inflation. These graphs highlight the non-linearities of state-dependent pricing

as shocks grow in magnitude. For example, on impact, the effect of the large shock

on both the frequency of price adjustment and inflation is about three times larger

than the effect of the medium shock, although the former is only twice as large

as the latter (10% vs. 20%). To highlight these features, it is useful to contrast the

IRFs of the menu costs model to those obtained from the Calvo model (Figure 11,

panel b). By construction, in the Calvo the number of firms adjusting their prices

is not affected by the magnitude of the shock (the GHF is a flat across the price

gap distribution) and adjusters are a random sample of the population (aka, there

is no selection effect). As a result, inflation increases with the magnitude of the

shock, but in a proportional way.

Figure 12: Persistence of inflation in state- and time-dependent models
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Notes. This figure presents the impulse responses of aggregate inflation to marginal cost shocks of

different sizes in the menu cost model and in the Calvo model. The x-axis reports quarters since

the shock.

The second observation regards the speed at which the permanent cost

shocks are fully incorporated into prices. Figure 11 highlights how large shocks

induce firms to react faster than small shocks do. The interplay of the endogenous

change in the frequency of adjustment and the selection effect (the observed
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price changes come from firms who need it the most) translates into a faster

passthrough from costs into prices. The passthough is notably slower in the Calvo

model, especially in response to large shocks. Figure 12 helps visualize this result,

overlaying the IRFs of inflation in the menu costs and Calvo models in response

to the same size shock.

In Appendix B we present two additional quantitative exercises. In the first

exercise, we study how cost shocks of different magnitudes affect both the static

target price 𝑝𝑜
𝑓 𝑡
and the dynamic optimal price 𝑝★

𝑓 𝑡
. We show that the gap between

the two prices is negligible if the cost shock is small, as expected, and remains small

even when the shock is larger. The dynamics of the two prices are particularly

close in the context of the menu cost model relative to the Calvo model. These

results are important because they suggest that the assumption that 𝑝𝑜
𝑓 𝑡

≈ 𝑝★
𝑓 𝑡

needed to derive the expressions for aggregate inflation and within-bin inflation

as a function of ex ante gaps (Equations (6) and (8), respectively) is sensible.

The second exercise studies the role of strategic complementarities in both

state- and time-dependent models. We compare inflation dynamics after high- and

low-cost shocks, without strategic complementarities (Ω = 0) and with strategic

complementarities (Ω = 0.5). As expected, the strategic complementarities lead to

a reduction in the cost pass-through in both the menu costs and the Calvo model.

The greater curvature of the value function under state-dependent pricing implies

that the difference between the impulse-response functions with and without

complementarities is narrower in the menu cost model, especially in response to

a large shock.

5.3 Aggregate cost-price dynamics: Model versus data

We now turn to evaluating the ability of our menu cost model to capture the time

series of aggregate inflation observed once fed with a sequence of aggregate cost

shocks extracted from the data. To begin, we describe our aggregate cost index

and provide descriptive evidence on the relationship between aggregate price

dynamics and the aggregate costs index and its components.
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Aggregate costs and aggregate inflation. Mirroring the construction of price

indices, we construct an aggregate nominal cost index that concatenates the

average changes in firm-level nominal marginal costs across producers (Δ𝑚𝑐𝑡 ):

𝑚𝑐𝑡 =

2023:𝑄4∑︁
𝑡=1999:𝑄2

(Δ𝑚𝑐𝑡 )

Δ𝑚𝑐𝑡 =
∑︁
𝑓 ∈F

𝑠 𝑓 𝑡 · Δ𝑚𝑐 𝑓 𝑡

where we normalized to zero the value of the index the first quarter of our data

(𝑚𝑐1999:𝑄1 = 0) and 𝑠 𝑓 𝑡 ≡
𝑠𝑓 𝑡+𝑠𝑓 𝑡−1

2
represents the Törnqvist weight assigned to each

domestic manufacturing firm 𝑓 .

According to our theory, firms price on the basis of current and expected

marginal costs. Therefore, the inflation rate between 𝑡 and 𝑡−4 (the year-over-year

rate, 𝑝𝑡−𝑝𝑡−4) should depend on the nominal marginal cost at 𝑡 , relative to the price

level at 𝑡 −4. We refer to the logarithmic difference between these variables,𝑚𝑐𝑡 −
𝑝𝑡−4, as the "scaled nominal marginal cost". Figure 13 (panel a) shows the evolution

of manufacturing inflation (red dashed line) and of scaled nominal marginal costs

(black line) throughout our sample period. Keep in mind that the scale of the two

axes differs for the two variables.

As the theory predicts, inflation closely tracks the fluctuations of scaled

marginal cost over the whole sample. But, also consistent with theory, there

is stickiness such that inflation moves less than costs do. At the same time,

underlying the significant surge and subsequent normalization of inflation in the

post-pandemic period was a dramatic rise and fall in scaled marginal costs.

To further stress the contribution of cost passthrough to movements in

inflation, Figure 13, panel b, plots aggregate inflation against the log-change of

average realized markups. We recover the latter as the difference between the

former and the change in our nominal aggregate nominal marginal cost measure:

Δ ln(Markup𝑡 ) ≡ 𝜋𝑡 − Δ𝑚𝑐𝑡 . This exercise illustrates that, at least in our sample,

the hypothesis that a rise in markups can explain the recent inflation surge seems
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Figure 13: Inflation, cost, and markup dynamics
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Notes. This figure shows the time series of year-over-year manufacturing PPI inflation (𝑝𝑡 − 𝑝𝑡−4)

alongside the times series of the scaled nominal marginal cost index (𝑚𝑐𝑡 − 𝑝𝑡−4, panel a) and the

log change in average realized markups (Δ ln(Markup𝑡 ), panel b) for the Belgian manufacturing

sector.

to have no bite in the data.
14

Finally, to get a sense of what may drive the fluctuations in nominal costs,

Figure 14 presents a decomposition of our aggregate cost index into its different

components. Recall that wemeasuremarginal cost as the ratio of total variable cost

to real output (Equation (12)). The top left panel shows the growth rate in total

variable cost and real output (black lines) relative to the growth rate of the nominal

14
Studying the price and cost data for a large global manufacturer, Alvarez et al. (2024b) also find

that markups remained stable markups over time over time, including during the inflation surge.
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marginal cost index (red dashed line). The two panels make clear that throughout

the sample, and in particular during the recent inflation surge, fluctuations in total

variable costs are the main drives the time-series evolution of nominal marginal

cost.

Figure 14: Decomposition of aggregate nominal marginal cost index
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Notes. This figure decomposes the log change in our nominal aggregate marginal cost index into

the log change in total variable costs (Δ𝑡𝑣𝑐𝑡 , top left panel), real output (Δ𝑦𝑡 , top right panel),

intermediates costs (Δ𝑝𝑚𝑚𝑡 , bottom left panel), and labor costs (Δ𝑤𝑙𝑡 , bottom left panel).

The two panels at the bottom of Figure 14 further decompose total variable

costs into the cost of intermediate inputs (purchases of materials, services, and

energy) and the cost of labor. As we can see, both cost components rose during

the post-pandemic period. However, the increase in the cost of the intermediates

was four times greater. This cost component alone accounts for approximately

70% of the revenues of manufacturing firms, on average. In addition, more than

80% of intermediate input costs come from importing from abroad. These figures

make clear how the shock to the cost of (foreign-supplied) intermediates—rather

than a surge in labor cost—is the main driver of the inflation surge between 2021

and 2023, at least in our sample.
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Explaining the time series of inflation. We now simulate the model to

explore its ability to explain the aggregate time series of inflation and the

frequency of price adjustment. We conduct the following quantitative exercise

for the state-dependent menu costs model and for its time-dependent Calvo

counterpart, calibrated to hit the same steady-state frequency of price adjustment.

Starting in 1999: Q1, we assume that the economy is in steady state. We then

feed the model a shock to the aggregate component of marginal cost, equal to the

logarithmic change in our aggregate nominal marginal cost index, 𝑚𝑐𝑡 −𝑚𝑐𝑡−1,

between 1999: Q1 and 1999: Q2. In doing so, we maintain the model’s assumption

that the logarithm of the aggregate component of firms’ marginal costs follows a

random walk with drift. Given this shock, we solve the model and compute the

new distribution of price gaps and the response of inflation to the frequency of

price adjustment, assuming that all future aggregate shocks are unanticipated, as

in an impulse response function. Using the updated distribution of price gap as

the new model’s equilibrium, we repeat this feeding exercise for all subsequent

quarters until 2023Q4, the last period in our sample.

Figure 15 compares model simulations and data for three series: quarterly

inflation, year-over-year inflation, and the quarterly frequency of price

adjustment. Panel a and b show that the menu costs model (black line) can capture

fluctuations in manufacturing inflation well, both during the moderate inflation

regime characterizing the pre-pandemic period and during the post-pandemic

inflation surge and bust.

Note also that, during the pre-pandemic period, the menu cost model

is nearly indistinguishable from the Calvo model, consistent with the price

adjustment frequency being relatively stable over this period. The Calvo model

also exhibits an inflation surge during the pandemic era, but of only about

two-thirds of that generated by the menu cost model. This exercise also highlights

the more sluggish behavior of inflation produced by the Calvo model relative to

that generated by the menu cost model. This is consistent with the faster cost

pass-through generated by the state-dependent pricing policies documented in

the impulse response function of Section 5.2.
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Figure 15: Inflation and frequency of price adjustment: Model versus data
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Notes. This figures contrasts the dynamics of PPImanufacturing inflation in the data to the inflation

dynamics generated by the Calvo and menu costs models, after feeding the model a sequence of

aggregate nominal marginal cost shocks that matched the one observed in the data.
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Finally, panel c plots the quarterly frequency of price adjustment. The model

captures the stable behavior of the adjustment frequency pre-pandemic, though

it misses the smooth trend decline between 2012 and 2019. However, the model

captures well the sharp jump in the adjustment frequency following the onset

of the pandemic, both in terms of timing and magnitude. As inflation drops,

the model’s frequency recedes faster than in the data. It is possible that firms

anticipated the mean reversion in nominal marginal costs better than our random

walk model would suggest.

6 Concluding Remarks

We have developed a state-dependent pricing model designed to provide an

accounting of aggregate price dynamics across both high and low inflation

regimes. The model explains both the low stable inflation of the pre-pandemic

period and the pandemic era surge. It also captures the associated changes in the

price adjustment frequency.

Unlike previous studies, we leverage detailed information on prices and costs

to construct a direct measure of firm’s price gaps. Studying the joint variation

of prices and price gaps, we show how firms’ behavior is consistent with the

state-dependent framework. At the micro level, variation in price gaps determines

both the likelihood that a firm adjusts its price and how much its price changes

conditional on adjustment.

At the macro level, we document linear cost-price dynamics in "normal"

times, when aggregate inflation is low. That is, aggregate inflation is well

approximated by the product of a fixed price adjustment probability and the

average price gap. In contrast, during the inflation surge, cost-price dynamics

were highly nonlinear. The sharp increase increase marginal cost led to not only a

jump in price gaps but also a significant increase in adjustment probabilities. This

extensive margin of price adjustment is the hallmark of state-dependent pricing

models, but it is absent in time-dependent models, such as the workhorse Calvo
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(1983) model.

Overall, we find that conditional on the path of marginal cost, the

state-dependent pricing model does a good job of capturing price dynamics both

at the firm and aggregate levels. A natural next step is to improve the modeling of

marginal cost and its connection to real activity. The conventional New Keynesian

model (for example, Galí 2015) typically includes labor as the only variable input,

implying that the marginal cost is measured by the labor share. However, our

analysis suggests that the main variation in marginal cost during the inflation

surge was due to sharp increases in the cost of intermediate inputs. Extending

a state-dependent version of the New Keynesian model to allow for intermediate

inputs, primary commodities and energy, and supply chains is on the agenda for

future research.
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Appendix

A Derivations

A.1 Derivation of markup function

Assume that a perfectly competitive retailer assembles a bundle of intermediate

inputs into a final product, 𝑌𝑡 . The bundle is Kimball aggregator of differentiated

goods produced by a continuum of producers (indexed by 𝑓 ):∫
1

0

Υ

(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
𝑑 𝑓 = 1,

where Υ(·) is strictly increasing, strictly concave, and satisfies Υ(1) = 1.

Taking as given demand 𝑌𝑡 , each firm minimizes costs subject to the

aggregate constraint:

min

𝑌𝑡 (𝑓 )

∫
1

0

𝑃𝑡 (𝑓 )𝑌𝑡 (𝑓 )𝑑 𝑓 s.t.

∫
1

0

Υ

(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
𝑑 𝑓 = 1.

where 𝑃𝑡 (𝑓 ) ≡ 𝑃𝑡 (𝑓 )
𝑒𝜑𝑡 (𝑓 )

is the quality-adjusted price. Denoting by 𝜓 the Lagrange

multiplier of the constraint, the first-order condition of the problem is:

𝑃𝑡 (𝑓 ) = 𝜓Υ′
(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
1

𝑌𝑡
(A.1)

Define implicitly the industry price index 𝑃𝑡 as:∫
1

0

𝜙

(
Υ′(1)𝑃𝑡 (𝑓 )

𝑃𝑡

)
𝑑 𝑓 = 1

where 𝜙 := Υ ◦ (Υ′)−1
. Evaluating the first-order condition (A.1) at symmetric

prices, 𝑃𝑡 (𝑓 ) = 𝑃𝑡 , we get 𝜓 =
𝑃𝑡𝑌𝑡
Υ′ (1) . Replacing for 𝜓 , we recover the demand
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function:

𝑃𝑡 (𝑓 )
𝑃𝑡

=
1

Υ′(1)Υ
′
(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
. (A.2)

Therefore, the demand function faced by firms when resetting prices is:

D𝑡 (𝑓 ) = (Υ′)−1

(
Υ′(1)

𝑃𝑜𝑡 (𝑓 )
𝑃𝑡

)
𝑌𝑡

Taking logs of Equation (A.1) and differentiating, we obtain the following

expression for the residual elasticity of demand:

𝜖𝑡 (𝑓 ) := −𝜕 lnD𝑡 (𝑓 )
𝜕 ln 𝑃𝑜𝑡 (𝑓 )

= −
Υ′

(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
Υ′′

(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
·
(
𝑌𝑡 (𝑓 )
𝑌𝑡

) (A.3)

We now use this result to derive the expression for the log-linearized desired

markup. As above, for ease of exposition, we focus on the symmetric steady

state. Denote the steady-state residual demand elasticity by 𝜖 = − Υ′ (1)
Υ′′ (1) . Then

the derivative of the residual demand elasticity 𝜖𝑡 (𝑓 ) in (A.3) with respect to
𝑌𝑡 (𝑓 )
𝑌𝑡

,

evaluated at the steady state, is given by:

𝜖′ =
Υ′(1) (Υ′′′(1) + Υ′′(1)) − (Υ′′(1))2

(Υ′′(1))2
≤ 0, (A.4)

which holds with equality if the elasticity is constant (e.g., under CES preferences).

The desired markup is given by the Lerner index. Log-linearizing the Lerner

index around the steady state and using Equation (A.4), we have that, up to a

first-order approximation, the log-markup (in deviation from the steady state) is

equal to:

𝜇𝑡 (𝑓 ) − 𝜇𝑓 =
𝜖′

𝜖 (𝜖 − 1) (𝑦𝑡 (𝑓 ) − 𝑦𝑡 )

Finally, log-linearizing the demand function (A.1) and using it to replace the log

difference in output, we obtain:

𝜇𝑡 (𝑓 ) − 𝜇𝑓 = −Γ
(
𝑝𝑜𝑡 (𝑓 ) − 𝑝𝑡

)
where, in the case of Kimball preferences, the sensitivity of the markup to the

relative price is given by Γ := 𝜖′

𝜖 (𝜖−1)
1

Υ′′ (1) . Finally, replacing the log-linearized

markup into the formula for the static optimal target price (obtained from cost
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minimization):

𝑝𝑜𝑡 (𝑓 ) = 𝜇𝑡 (𝑓 ) +𝑚𝑐𝑡 (𝑓 )

= 𝜇𝑓 + (1 − Ω)𝑚𝑐𝑡 (𝑓 ) + Ω(𝑝𝑡 + 𝜑𝑡 (𝑓 ))

where Ω ≡ Γ
1+Γ is the degree of strategic complementarities.

Quadratic approximation of Generalized Hazard Function

Alvarez et al. (2022) show that, under a quadratic profit function and and low

trend inflation, the GHF can be approximated, up to second order, by a quadratic

function of the ex ante price gap as in Equation (7):

ℎ𝑡 (𝑥′𝑡−1
(𝑓 )) ≈ (1 − 𝜃𝑜) + 𝜙 ·

(
𝑥′𝑡−1

(𝑓 )
)

2

.

The parameter 𝜙 controls the sensitivity of the GHS to changes in gaps (i.e., the

"steepness" of the parabola). Averaging across firms we have that the average

frequency of price adjustment is given by:

¯ℎ𝑡 (𝑥′𝑡−1
) ≡

∫
[0,1]

ℎ𝑡 (𝑥′𝑡−1
(𝑓 )) ≈ (1 − 𝜃𝑜) + 𝜙 ·

∫
[0,1]

(
𝑥′𝑡−1

(𝑓 )
)

2

𝑑 𝑓 (A.5)

To take Equation (A.5) to the data, we partition the support of the distribution

ex ante price gap into equally spaced bins. Assume that the first and second

moments of the distribution of 𝑥′𝑡 (𝑓 ) within each bin exist and denote them by

𝑥′
𝑏
≡

∫
𝑓 ∈𝑏 𝑥

′
𝑏𝑡−1

(𝑓 ) 𝑑 𝑓 and 𝜎2

𝑏
≡

∫
𝑓 ∈𝑏 (𝑥

′
𝑡−1

(𝑓 ) − 𝑥′
𝑏
)2 𝑑 𝑓 .

Adding a white noise disturbance, 𝜈𝑏 , we obtain the cross-sectional

regression model:

ℎ𝑏 (𝑥′𝑏) = 𝑎1 + 𝑎2 ·
(
𝑥′
𝑏

)
2 + 𝜈𝑏 . (A.6)

Estimating model (A.6) via weighted least squares (weighting observations by the

number of observations within each bin) allows us to calibrate the free-adjustment

parameter, 𝜃 0 = 𝑎1 − 1, and the steepness parameter, 𝜙 = 𝑎2. Plugging these

estimates into Equation (A.5) and using the information on the first and second

moments of the price gaps across bins, we can characterize the empirical GHF, as

shown by the dotted line in Equation (6).
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Cubic approximation of inflation within a bin

We partition the distribution of price gaps into bins denoted by 𝑏. As before,

we denote by 𝑥′
𝑏
and 𝜎2

𝑏
the first and second moments of the ex ante price gap

distribution within a bin.

Using Equation (A.5) and the formula of the variance, we have that the

average frequency of price adjustment for firms in bin 𝑏 is given by:

ℎ𝑏 (𝑥′𝑏) =
∫
𝑓 ∈𝑏

ℎ𝑡 (𝑥′𝑡−1
(𝑓 )) ≈ (1 − 𝜃𝑜) + 𝜙

(
(𝑥′

𝑏
)2 + 𝜎2

𝑏

)
. (A.7)

Next, consider the expression for aggregate inflation under the assumption that

𝑝★𝑡 (𝑓 ) ≈ 𝑝𝑜𝑡 (𝑓 ) in Equation (6). We choose these bins to be sufficiently narrow

such that within each bin the covariance between the GHF is approximately zero:∫
𝑓 ∈𝑏 ℎ𝑡 (𝑥

′
𝑡−1

(𝑓 )) · 𝑥′𝑡−1
(𝑓 ) 𝑑 𝑓 ≈ 0. When this condition is satisfied, we have that

inflation within a bin is given by:

𝜋𝑏 ≈
∫
𝑓 ∈𝑏

ℎ𝑡 (𝑥′𝑡−1
(𝑓 )) 𝑑 𝑓 ·

∫
𝑓 ∈𝑏

(
𝑥′𝑡−1

(𝑓 )
)
𝑑 𝑓 = ℎ𝑏 (𝑥′𝑏) · 𝑥

′
𝑏
.

Finally, we use the expression in (A.7) to substitute forℎ𝑏 (𝑥′𝑏) in the equation above
and define the bin-specific coefficient 𝜙0

𝑏
≡

(
(1 − 𝜃𝑜) +𝜙𝜎2

𝑏

)
to obtain Equation (8)

in the paper:

𝜋𝑏 ≈ (1 − 𝜃𝑜) + 𝜙

(
(𝑥′

𝑏
)2 + 𝜎2

𝑏

)
· 𝑥′

𝑏

= 𝜙0

𝑏
𝑥′
𝑏
+ 𝜙 (𝑥′

𝑏
)3, (A.8)

The equation above represents the data generating process behind the binned

scatter plot in Figure (7). To take this equation to the data, we estimate the

following cross-sectional regression model:

𝜋𝑏 = 𝑏1𝑥
′
𝑏
+ 𝑏2(𝑥′𝑏)

3 + 𝜂𝑏 . (A.9)

where the error term 𝜂𝑏 ≡ (𝜙0

𝑏
− 𝑏1)𝑥′𝑏 + 𝜈𝑏 , with 𝜈𝑏 representing a white noise

disturbance.

We want to show that (i) the coefficient in front of the linear term, 𝑏1,

is a constant that equals the average frequency of price adjustment between

observations that belong to the bins in the regression sample; (ii) the estimate
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of 𝑏1 is unbiased. (iii) 𝑏2 converges in probability to 𝜙 .

Denote by𝜎2

𝑏
the average of the variances between all bins𝑏 in the regression

sample. Adding and subtracting 𝜙𝜎2

𝑏
to Equation (A.8) we obtain:

𝜋𝑏 ≈
(
(1 − 𝜃𝑜) + 𝜙𝜎2

𝑠𝑠

)
· 𝑥′

𝑏
+ 𝜙 (𝑥′

𝑏
)3 +

(
𝜙 (𝜎2

𝑏
− 𝜎2

𝑠𝑠) · 𝑥′𝑏
)

where the the

(
𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏

)
is equal to the error term, 𝑣𝑏 , in regression (A.9).

The term

(
(1 − 𝜃𝑜) + 𝜙𝜎2

𝑏

)
is equal to the coefficient 𝑏1. Given that the average

price gap is approximately zero,

∫
(𝑥′

𝑓 𝑡−1
)2 𝑑 𝑓 ≈ 0 and the coefficient in front of

the linear term captured the average frequency of price adjustment across the bins

in the regression sample:

(
(1 − 𝜃𝑜) + 𝜙𝜎2

𝑏

)
≈ ¯ℎ𝑏 .

Finally, we can show that estimator 𝑏1 from model (A.9) converges in

probability to
¯ℎ𝑏 . To do this, we need to show that the following exclusionary

restriction holds:

𝐶𝑜𝑣 (𝑥′
𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) = 0

Define an indicator for a gap being positive:

I+ ≡


1 if 𝑥′
𝑏
> 0

0 otherwise

and similarly for the negative gaps (I−). Then, we have that:

𝐶𝑜𝑣 (𝑥′
𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) =

𝐶𝑜𝑣 (I+ · 𝑥′
𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) +𝐶𝑜𝑣 (I− · 𝑥′

𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) =

𝐶𝑜𝑣 (I+ · 𝑥′
𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) −𝐶𝑜𝑣 (I− · 𝑥′

𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) =

𝐶𝑜𝑣 (I+ · 𝑥′
𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) −𝐶𝑜𝑣 (I+ · 𝑥′

𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) = 0

where the last line follows from the fact that both 𝑥′
𝑏
and (𝜎2

𝑏
− 𝜎2

𝑏
) are symmetric

around zero. Finally, the same argument applies to (𝑥′
𝑏
)3
, so the estimator is

consistent.
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B Additional quantitative exercises

In this section, we present additional quantitative exercises using the simulation

of the calibrated menu costs and Calvo models. The first set of exercises study how

cost shocks affect both the static target price 𝑝𝑜
𝑓 𝑡

and the dynamic optimal price

𝑝★
𝑓 𝑡
. The second exercise studies the role of strategic complementarities in price

setting.

Approximation of 𝑝★
𝑓 𝑡

with 𝑝𝑜
𝑓 𝑡
. As discussed in Section 2, the two prices

coincide in a steady state with zero trend inflation and constant markups. We also

argued that the two prices remain sufficiently close to each other as long as trend

inflation is not too large, even in the presence of strategic complementarities in

pricing. We therefore assumed 𝑝𝑜
𝑓 𝑡
≈ 𝑝★

𝑓 𝑡
, which implies that 𝑥★

𝑓 𝑡
≈ 0, and derived

expressions for aggregate inflation and within-bin inflation as a function of ex

ante price gaps (Equations (6) and (8), respectively). The question is how well 𝑝𝑜
𝑓 𝑡

approximates 𝑝★
𝑓 𝑡
away from the steady state.

The impulse response functions shown in Figure A.1 indicate that, as

expected, the static reset price responds more than the static one to cost shocks,

since the dynamic optimum 𝑝★
𝑓 𝑡
accounts for the marginal cost being a persistent

process, though not a pure random walk, due to strategic pricing motives.

However, this exercise also shows that the gap between the two prices is negligible

if the shock is small, as expected, and remains small even when the shock is

large. Thus, the assumption that 𝑝𝑜
𝑓 𝑡

≈ 𝑝★
𝑓 𝑡
is sensible. Additionally, this exercise

demonstrates how the dynamics of the two prices are particularly close in the

context of the menu cost model relative to the Calvo model.

Next, we verify that using 𝑝𝑜
𝑓 𝑡

as an approximation for 𝑝★
𝑓 𝑡

has a small

impact on aggregate inflation dynamics once we feed the model a sequence of

aggregate nominal marginal cost shocks that matched the one observed in the

data. Figure A.2 repeats the same quantitative exercise presented in Figure 15.

The black line displays the time-series of model-based quarterly inflation using

𝑝★
𝑓 𝑡

as a measure of target price; the red dashed line displays the time-series of
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Figure A.1: Impulse responses: Static vs dynamic price targets

Panel a: State-dependent pricing (Menu costs)
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Panel b: Time-dependent pricing (Calvo)
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Notes. This figure presents impulse responses of the static target price (𝑝𝑜 ) and the optimal reset

price (𝑝★) to aggregate cost shock of different sizes. The x-axis reports quarters since the shock.

model-based inflation, solving the model with 𝑝𝑜
𝑓 𝑡
as a proxy for 𝑝★

𝑓 𝑡
.

The role of strategic complementarities. Strategic complementarities in the

setting of prices are one factor that contributes to explaining the differential

dynamics of static and dynamic reset prices in time- and state-dependent models.

Figure A.3 compares inflation dynamics after high- and low-cost shocks, without

strategic complementarities (Ω = 0) and with strategic complementarities (Ω =

0.5). As before, Panels a and b report the impulse response functions for

the menu cost model and the Calvo model, respectively. As expected, the

strategic complementarities generate additional discounting, which reduces cost

pass-through in bothmodels. However, we can see how the difference between the

impulse-response with and without complementarities is narrower in the menu
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Figure A.2: Quarter-over-quarter inflation: Static vs dynamic price targets
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Notes. This figure contrasts the inflation dynamics generated by the menu cost model using 𝑝★

(the exact, dynamic reset price) and using 𝑝𝑜 (the static approximation of 𝑝★) when solving the

model. As in Figure 15, we solve the model feeding it a sequence of aggregate nominal marginal

cost shocks that matched the one observed in the data.

cost model, especially in response to a large shock. This is due to the greater

curvature of the value function under state-dependent pricing.

A.8



Figure A.3: The role of strategic complementarities

Panel a: State-dependent pricing (Menu costs)
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Panel b: Time-dependent pricing (Calvo)
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Notes. This figure presents the impulse responses of inflation to aggregate cost shocks of

different sizes, without strategic price complementarities (Ω = 0, black line) and without strategic

complementarities (Ω = 0.5, red dashed line). The blue dotted line represents the ratio of the

impulse response under Ω = 0 over the impulse response under Ω = 0.5. Panel a reports the

impulse response for our state-dependent pricing model (menu costs model). Panel b reports

the impulse responses for a time-dependent model (Calvo model), calibrated to display the same

steady-state frequency of price adjustment as the time-dependent model. The x-axis reports

quarters since the shock.

References

Alvarez, F., F. Lippi, and A. Oskolkov (2022): “The macroeconomics of sticky

prices with generalized hazard functions,” The Quarterly Journal of Economics,
137, 989–1038.

A.9


	Introduction
	Theoretical framework
	A tractable state dependent pricing model
	Discussion and testable implications

	Data and measurement
	Prices, costs, and frequency of price adjustments
	Measurement of price gaps
	Harmonization and data cleaning
	The joint distribution of price changes and price gaps: Summary statistics 

	Micro evidence of state dependent pricing
	The empirical Generalized Hazard Function
	Nonlinear price dynamics along the price gap distribution
	Price gaps and price changes conditional on adjustment
	Large cost shocks and shifts in the price gaps distribution
	Frequency of price adjustment across inflation regimes

	Quantitative implications 
	Calibration 
	Impulse-responses to small and large aggregate shocks 
	Aggregate cost-price dynamics: Model versus data

	Concluding Remarks
	Derivations
	Derivation of markup function

	Additional quantitative exercises

