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Abstract

This paper provides novel theory and evidence on the dynamic pricing behavior

of firms, their process of belief formation, and the aggregate implications for mone-

tary non-neutrality. We combine almost three decades of monthly microdata on prices,

costs, and survey expectations for the Belgian manufacturing sector to quantify the roles

of nominal, real, and information frictions in accounting for the incompleteness of the

pass-through of cost shocks into prices. We find that the three rigidities are all quantita-

tively important, and in particular that firms exhibit a high average monthly discounting

of about 0.8 attributable to the information friction. We further show that the discount-

ing is state-dependent, just below one when firms are hit by large shocks and lower in

normal times, consistent with a model in which firms update their beliefs faster in re-

sponse to large disturbances. At the aggregate level, these findings imply a non-linear

Phillips curve and a central role for heterogeneity across industries via the elasticity of

inflation to aggregate shocks. Because the state-dependent information friction oper-

ates as an amplification mechanism of cost shocks, the model can explain a larger share

of inflation volatility than the full-information benchmark, suggesting a quantitatively

relevant channel by which incomplete information increases the neutrality of money.
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1 Introduction

This paper studies how firms form beliefs and set prices dynamically when facing persis-

tent shocks to their production costs. This question is central to understanding the sources

of aggregate fluctuations in real variables such as output or unemployment, the welfare

costs associated with such gyrations, and how the monetary authority can effectively coun-

teract the effects of disturbances. If the pass-through from costs to prices was complete

and production inputs were priced flexibly, money would be neutral. In turn, traditional

interventions by the central bank would have no effect on firms’ production decisions.

However, in the data, one typically observes real effects of monetary policy. This fact has

prompted researchers to develop theoretical and empirical frameworks that accommodate

forms of price rigidity and therefore an incomplete pass-through of cost shocks into prices.

The literature has identified three key forms of rigidities that possibly underlie the

aggregate relation between inflation and measures of real activity, i.e. the Phillips curve.1

Nominal frictions, which are a key ingredient of standard dynamic stochastic general equi-

librium models used in policy analysis, pose a technological constraint on the ability of

firms to adjust output prices costlessly in every period. Information frictions limit the

ability of firms to acquire or process knowledge regarding the realizations of shocks and

therefore factor them into pricing decisions. Real frictions generate strategic motives in

pricing behavior and coordinated adjustments for all the competitors within a market.

Nominal, information, and real frictions are all ex-ante plausible candidates for ex-

plaining the patterns that we observe in aggregate data. What has often prevented the lit-

erature from making conclusive progress in disentangling between these sources of price

rigidity is the lack of systematic panel data on costs and prices at the firm level. Moreover,

the interaction between nominal and information frictions leads to a prominent role for

firms’ expectations that implies the necessity to complement the information on realiza-

tions with survey data on firms’ beliefs (Coibion et al. 2018a).

In this paper, we develop a novel theoretical framework and provide empirical evi-

dence on the relative importance of the three frictions in accounting for the incompleteness

of the cost-price pass-through. We construct a unique dataset encompassing almost three

decades of monthly observations for firms in the Belgian manufacturing sector with mea-

sures of prices, costs, and expectations, and show that the three rigidities all play quanti-

tatively important roles. We further provide evidence of the following three empirical reg-

ularities. First, the presence of incomplete information leads to a high discounting at both

the micro and macro levels, which reduces the sensitivity of inflation to shocks. Second,

firms update their beliefs faster in response to large nominal disturbances, behaving as if

1Seminal contributions that discussed the importance of nominal, real, and information rigidities are Lucas
(1972), Rotemberg (1982), Calvo (1983), Ball and Romer (1990), Woodford (2001), and Mankiw and Reis (2002).
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they had approximately complete information. This channel generates a non-linear pass-

through, which is higher when shocks are large. Third, high discounting and nonlinearities

lead to a key role for heterogeneity across industries, which increases the transmission of

cost shocks partially counteracting the aggregate effects of incomplete information.

Our theoretical framework is rich though parsimonious —with one parameter for

each of the three rigidities— and nests the standard New Keynesian model with full in-

formation as a special case. The nominal rigidity is modeled à la Calvo, whereas the real

rigidity allows for standard forms of imperfect competition which include monopolistic

competition, Kimball preferences, and static or dynamic oligopolies. To depart from full

information, we suppose that costs evolve stochastically over time as the product of a nomi-

nal common component and a real idiosyncratic component with different persistence. The

information friction is that, though firms can observe their contemporaneous costs and the

aggregate price level, they cannot distinguish between the two components of costs. Due

to the unobservability of the split, firms solve a signal-extraction problem to forecast the

persistence of the overall process for costs. When forming subjective beliefs, the weight

that firms attach to their private forecast of the idiosyncratic component —i.e. the Kalman

gain— captures the speed at which expectations are updated. In the model, this coefficient

may vary endogenously over time whenever firms are surprised by aggregate inflation, and

thus infer the presence of a new nominal cost shock.

The model directly implies a moment restriction on the joint intertemporal distri-

bution of prices and costs, i.e. a dynamic pass-through regression. Due to endogeneity

concerns and measurement limitations, identification requires a set of instruments. We

show that identification of the degrees of nominal and real rigidities is obtained by using

lags of observables and appropriate controls for demand. The novel identification argu-

ment pertains to the estimation of the Kalman gain. The conceptual difficulty that arises

due to the dynamic nature of our setting is that the Kalman gain needs to be identified

using variation in expectations that is uncorrelated with the noise in the private forecasts

of the idiosyncratic cost components. As expectations depend directly on such noise (away

from full information), they do not generally satisfy the exclusion restriction. However, we

show that a coarse transformation of expectations, the expected sign of a price change, is

uncorrelated with the noise in large samples. Therefore, a set of shifters that includes lags

of costs and prices and the expected sign of the price change provides identification for the

parameters of the model.

We begin by bringing the model to data for the special case of a constant Kalman

gain and then inspect time variation and heterogeneity thereafter. The estimated average

pass-through of contemporaneous shocks is large compared to standard estimates based

on aggregate data (around 1.6% at a monthly frequency), but it is substantially lower
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for future shocks (around 1.2%). In particular, we find that firms exhibit a high aver-

age discounting of about 0.8 attributable to the information friction. Moreover, consistent

with earlier findings (Gagliardone et al. 2023), the real rigidity decreases the pass-through

by approximately 60% and the nominal friction implies a duration of the price spell of

roughly a year. These estimates imply a substantial degree of monetary non-neutrality,

consistent with the evidence from aggregate data.

We then move to study the cyclical properties of the Kalman gain and its hetero-

geneity across industries. We show empirically that the pass-through from costs to prices

is state-dependent, high when the economy is hit by a large nominal shock and smaller

in normal times. We provide evidence that these nonlinearities are partially attributable

to the formation process of beliefs, which displays a faster updating in response to large

nominal shocks that can be described via a higher Kalman gain. By extending the dynamic

pass-through regression, we obtain quantitative estimates of regime-specific Kalman gains.

We find that the estimated coefficient is just below one when industry inflation (in absolute

value) is in the top 10% of the distribution, indicating that firms respond to large shocks

as if they had almost complete information. On the other hand, in the remaining sample,

the estimates are much lower, ranging from 0.69 to 0.28 with large standard errors. We

conclude that a state-dependent Kalman gain, which increases in response to nominal cost

shocks, is consistent with the evidence that we provide and can partially account for the

observed nonlinearities of the pass-through.

The aggregate implications of our findings are discussed by deriving analytically

the cost-based New Keynesian Phillips curve (NKPC), which is a description of the rela-

tion between inflation and costs at the aggregate level. In the full-information benchmark,

aggregate inflation satisfies a standard linear NKPC with exponential discounting of ex-

pectations. However, the state-dependent information friction generally leads to nonlin-

earities in the NKPC and a higher discounting of expectations. In particular, we formally

show that, under the information friction, the aggregate discounting fluctuates over time

but is generally bounded away from one. Moreover, high discounting and nonlinearities

lead to a response of aggregate inflation to nominal cost shocks that increases with the

dispersion of inflation rates across industries. Therefore, industry heterogeneity plays a

central role in determining aggregate inflation via its elasticity to nominal disturbances.

Finally, we ask how much inflation volatility can the model explain. We derive

analytically a “reduced-form” NKPC, which relates expected inflation to aggregate real

marginal cost. We can then use this characterization to obtain the model-based time series

for aggregate inflation from the realized path of aggregate costs. We show that the nonlin-

ear model lines up well against the data, though not all the realized volatility of inflation

can be explained. In particular, the model can account for up to 63% of the volatility of
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inflation. Nevertheless, this departure from complete information significantly improves

the fit. Indeed, when repeating the exercise with the linear NKPC, we find that the full-

information benchmark accounts for only 50% of inflation volatility. We conclude from the

exercise that the state-dependent information friction operates as an amplification mech-

anism of nominal cost shocks leading to larger fluctuations in prices, therefore implying

more monetary neutrality compared to the full-information benchmark.

1.1 Literature Review

This paper is related to four strands of the literature. First and foremost, we contribute to

the recent agenda that investigates empirically how beliefs are updated depending on the

aggregate environment in which agents operate. Moreover, this paper provides new facts

that complement existing survey-based evidence on firm expectations regarding inflation,

new estimates of the slope of the NKPC, and novel theoretical insights regarding the impli-

cations of incomplete information for the neutrality of money. Compared to the literature,

we are the only paper —to the best of our knowledge— that uses firm-level data on both

realizations of prices and costs as well as beliefs, which allows us to inform on the mecha-

nism by which expectations are updated and derive the novel theoretical implications.

Evidence of state-dependent information frictions. A novel strand of the literature on

incomplete information shows that the process of expectation formation changes depend-

ing on aggregate conditions. Weber et al. (2023) use a randomized-control trial to iden-

tify the Kalman gain and show that it increases with aggregate inflation. We embed the

idea in a dynamic pricing model and provide model-based identification for the parame-

ter from the intertemporal co-movements in costs, prices, and expectations. Afrouzi et al.

(2024) model theoretically the information acquisition of a firm that resets prices sub-

ject to nominal rigidities. Consistently with their theoretical and empirical findings, we

provide evidence of a role for “selection,” that increases the pass-through of shocks reduc-

ing monetary non-neutrality. Differently from the authors, we model a mechanism via a

forward-looking updating of the prior uncertainty, as opposed to the variance of the noise

component.2 Pfäuti (2023) studies empirically the evolution of the Kalman gain using

aggregate data on inflation and expectations, and provides estimates for a threshold for in-

flation above which the Kalman gain increases. Similarly, we also provide estimates for the

2This departure from the approach in the rational inattention literature (Sims 2003, Maćkowiak and Wieder-
holt 2009, Maćkowiak et al. 2023) is motivated by the empirical evidence that we provide and leads to a conve-
nient solution to the problem of relating the (observable) dispersion of posterior beliefs with the (unobservable)
Kalman gain. Indeed, whereas the variance of the noise is non-monotonically related to the dispersion in beliefs,
the prior uncertainty is monotone in it and thus allows us to infer from data on belief dispersion the behavior of
the Kalman gain. See section 5 for a formal treatment.
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parameter using a threshold rule on the realized squared industry inflation rate. Finally,

this paper provides theory and micro-evidence consistent with the “Attention-Inflation

Hypothesis” proposed by Bracha and Tang (2024), according to which attention to infla-

tion varies systematically with the price level. However, in our model, it is the common

uncertainty regarding the evolution of the price distribution (prior variance) that increases

following a nominal shock. Our mechanism is in line with evidence from the quasi-natural

experiment studied in Drenik and Perez (2020) of a systematic positive relation between

uncertainty and dispersion in prices.

Evidence on expectations of firms. This paper also contributes to the vast literature that

provides survey-based evidence on firm expectations regarding inflation (Coibion et al.

2020, Andrade et al. 2022, Kumar et al. 2023, Candia et al. 2024). In particular, consistent

with the findings of Coibion et al. (2018b), we document that firms form beliefs in a seem-

ingly rational way by anticipating accurately whether they are going to increase prices in

the next months, and use this fact to construct a relevant shifter for realized future prices.

Nevertheless, we discuss evidence of a potential departure from Bayesian updating that is

instead consistent with a form of present bias or hyperbolic discounting (Laibson 1994).

Evidence on the slope of the NKPC. Building on our earlier work, we provide novel

estimates for the slope of the NKPC at monthly frequency. In line with previous results

(Gagliardone et al. 2023), we find that the slope is statistically larger than zero even in

normal times. This paper further clarifies the key importance of controlling for a time fixed

effect, as discussed in McLeay and Tenreyro (2020), Hazell et al. (2022), and Fitzgerald

et al. (2024). In particular, we derive within the model the time fixed effect and show

that it indeed controls for a common trend in beliefs which would lead to bias, as the

previous literature argued. Finally, our framework provides a constructive explanation

for the flattening of the cost-price correlation in normal times by showing that it can be

partially attributed to changes in the discount factor.

Aggregate implications of incomplete information. Finally, our paper contributes to

the theoretical literature that investigates the role of incomplete information for inflation

dynamics in models with information and nominal rigidities. Building from the semi-

nal works of Lucas (1972), Woodford (2001), and Mankiw and Reis (2002), several papers

have shown how incomplete information leads to an “anchoring” of expectations to the

prior (i.e. a Kalman gain strictly smaller than one) and concluded that incomplete infor-

mation increases monetary non-neutrality. Some influential contributions to this vast lit-

erature are Nimark (2008), Angeletos and La’O (2009), Maćkowiak and Wiederholt (2009),
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Melosi (2014), Paciello and Wiederholt (2014), Angeletos and Lian (2018), and Angeletos

and La’O (2020). Compared to this literature, we argue that the anchoring to the prior

has no impact on the expected inflation dynamics, though it leads to a slower decay of ex-

pectations over time that can rationalize the evidence that we provide on the nonlinear

pass-through. Instead, the presence of the state-dependent information friction leads to

a reduction in monetary non-neutrality and an increase in inflation volatility in response

to nominal shocks compared to the full-information benchmark. The closest paper in this

literature is Hellwig and Venkateswaran (2014), which shows that the interaction between

the nominal rigidity and imperfect information regarding the persistence of shocks leads

to a signal-extraction problem. Compared to that paper, we highlight the role of the state-

dependent information friction, which leads to novel aggregate implications.

The paper develops as follows. Section 2 outlines the theoretical framework under-

lying the empirical analysis. Section 3 describes the data and measurement of the relevant

variables for the empirical analysis. Section 4 discusses identification and the baseline es-

timation results. Section 5 provides evidence and discusses the mechanism underlying the

state-dependent information friction. Section 6 derives the aggregate implications of our

findings and provides validation for the model using aggregate data. Section 7 concludes.

2 Theoretical framework

This section develops the theoretical framework that underlies the empirical analysis that

will follow. We first discuss the primitives of the model, namely demand, costs, and infor-

mation. We then introduce real, nominal, and information rigidities. The intertemporal

problem of firms and the formation of beliefs are then characterized. Finally, we derive the

Dynamic Pass-through Regression, which we estimate in section 4 after discussing data

and identification.

2.1 Primitives

Demand. The economy is populated by heterogeneous firms, denoted by f , each oper-

ating in an industry i ∈ [0,1]. We denote by Fi the set of competitors in industry i. Let

pf it be the log price charged by each firm for a unit of its output, pit :=
∫
Fi
pf it df the log

Cobb-Douglas industry price index, and Yit the real industry output. For any industry i,

we consider a demand system that generates a residual demand function of the following

form:3

Df it := d(pf it , pit) ·Yit ∀f ∈ Fi . (1)

3We allow for demand shocks in the empirical analysis. See section 4.3.
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Denote with µf it the log Lerner index and with ϵf it the residual elasticity of demand:

µf it := ln
(
ϵf it

ϵf it − 1

)
, ϵf it := −

∂ lnDf it
∂pf it

.

We refer to µf it as the desired markup, which is the markup that a firm would enjoy absent

frictions. Under (1), the desired markup depends only on relative prices, µf it ≡ µ(pf it , pit).

If the demand function can be log-linearized around a symmetric steady-state, then:

µf it −µ = −Γ (pf it − pit), (2)

where {µf it = µ}f ∈Fi , i∈[0,1] at the steady state and Γ > 0 is the steady-state elasticity of the

desired markup with respect to relative prices. As we show in Appendix A.1, this speci-

fication nests standard forms of imperfect competition such as monopolistic competition

with Kimball preferences (Kimball 1995) or static and dynamic oligopolies (Atkeson and

Burstein 2008, Wang and Werning 2022) and has been used in empirical work for special

cases of this model (Amiti et al. 2019, Gagliardone et al. 2023). Finally, firms commit to

producing enough output to meet demand for any realized price such that markets clear.

Costs. Firms are heterogeneous in their production technologies. We assume that a unit

of output Yf it is produced at a nominal marginal cost:

MCnf it = M̃Cf it ·MCnit , (3)

where MCnit := exp(
∫
Fi

ln(MCnf it)df ) denotes the average nominal marginal cost in an in-

dustry and M̃Cf it is the real idiosyncratic component. Whereas the industry marginal cost

fluctuates because of nominal industry shocks, the idiosyncratic component moves when-

ever a firm-specific real shock occurs. For example, a nominal shock to aggregate costs can

be a monetary policy shock, and an idiosyncratic real shock can be a productivity shock.

To make the forecasting problem not trivial while maintaining tractability, we assume that

the two processes are Markov with different persistence. We denote with lowercase letters

the costs in logs, e.g. mcnf it := ln(MCnf it) is the log nominal marginal cost. In particular, we

suppose that the nominal component follows a random walk process and the real compo-

nent a stationary AR(1) process with Gaussian shocks and time-invariant distribution:

mcnit+1 =mcnit + εn,it+1

m̃cf it+1 = ρm̃cf it + εr,f it+1, εr,f it+1
i.i.d.∼ N (0,σ2

r ), |ρ| < 1
(4)
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We will show in section 3 that these functional forms are supported in the data and, specif-

ically, that we can reject a null hypothesis of unit root for the real component but not for

the nominal component. Whereas the assumption of normal real shocks leads to a price

distribution that is log-normal within an industry, at this stage we make no assumptions on

the distribution of the nominal shocks so that the distribution across industries can depart

from normality.

Information. At the beginning of period t, every firm within an industry forms a prior

belief regarding the evolution of costs. We assume that the prior belief is in common

because based on a common information set I it , which evolves over time as:

I it = {pit ,mcnit−1} ∪ I it−1 .

All firms observe the industry price index and the realized nominal component of costs

in the previous period. The prior belief that is formed based on this common information

set evolves over time generating a common trend in subjective beliefs. We denote by Eit ≡
E(·|I it) the conditional expectation.

As is standard in the incomplete information literature (e.g. Angeletos and La’O

2009, Angeletos and Lian 2018) we suppose that goods’ prices do not fully reveal the dis-

tribution of costs. Such information rigidity is reasonable because, in reality, firms produce

with complex production functions that include several inputs, whose prices may be im-

perfectly correlated with the retail prices.4 Specifically for our setup, we suppose that,

whereas firms observe their own costs mcnf it before making pricing decisions, they cannot

disentangle between the idiosyncratic and common components, m̃cf it andmcnit , even after

observing pit . As processes are Markov, if firms were able to decompose costs there would

be “full information,” by which we refer to the usual case in which firms can perfectly

forecast future costs up to the realization of new cost shocks.

To model the departure from full information in a tractable way, we introduce a

noisy private Gaussian signal sf it which is informative regarding the idiosyncratic com-

ponent of costs m̃cf it and therefore the decomposition. Firms incorporate the signal opti-

mally into their pricing decisions to the extent that it is useful (i.e. they do not know m̃cf it
already). In section 2.5, we discuss in detail the belief formation process. For the moment,

consider the noisy signal as a simple modeling device that introduces noise in expectations,

so that expected and realized prices can systematically and persistently differ. In the lim-

iting case of full information, the noise becomes orthogonal to expectations implying that

4This friction can be viewed as a cognitive constraint on the ability of firms to forecast aggregate variables,
which is arguably a more costly or complex task than making pricing decisions upon observing the aggregate
price index, as it involves higher-order reasoning.
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the differences between expected and realized prices cannot be systematic (Muth 1961).

Finally, we also allow firms to privately observe histories of their own costs and

prices. The private information set evolves over time as:

I f it = {mcnf it ,pf it−1, sf it} ∪ I it∪I f it−1 .

We denote by Ef it ≡ E(·|I f it) the associated conditional expectation. Given this infor-

mation, what prevents firms from forming a perfect forecast of the path of future prices

(conditionally on no new shocks occurring) is solely the inability to observe separately the

marginal cost components. At the end of period t, after price decisions are taken and prices

are realized and observed, firms recover m̃cf it from the signal, so that they enter the new

period t + 1 with knowledge of mcnit .

2.2 Static Pricing

We start by describing how prices are set in a static setting without nominal rigidities. It

follows directly from cost minimization that the static optimal log price that firms would

set absent nominal rigidities is given by a markup over marginal cost:

p⋆f it := µf it +mcnf it .

Replacing the log-linearized markup (equation 2) and solving for the price, the static opti-

mal price is given by:

p⋆f it = (1−Ω)(µ+mcnf it) +Ωpit

= µf + (1−Ω)mcrf it + pit
(5)

where Ω := Γ
1+Γ ∈ (0,1) is the degree of strategic complementarities in price setting,mcrf it :=

mcnf it − pit is the real marginal cost, and µf := (1 −Ω)µ is the steady-state markup scaled

by the degree of strategic complementarities. As standard, approximating the firm’s profit

function to a second order around the static optimum pf it = p⋆f it , the firm’s losses from

mispricing are given by:

Πf it ≡Π(pf it ,p
⋆
f it) = − ϵ(ϵ − 1)

2(1−Ω)

(
pf it − p⋆f it

)2
, (6)

where ϵ is the residual elasticity of demand at the symmetric steady state. The curvature

of the profit function increases in the demand elasticity so that losses from mispricing are

larger when facing a more elastic demand. Finally, notice that, absent nominal rigidities
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that make the problem dynamic, the information friction is immaterial as price setting

does not depend on the idiosyncratic versus common components separately. In fact, from

equation (5), knowledge of mcnf it and pit is sufficient to compute p⋆f it regardless of whether

cost shocks are real or nominal.

2.3 Firm’s Problem

Firms are price setters subject to nominal rigidities à la Calvo. Denote by pof it := ln(P of it)

the log reset price, which equals the realization of the price pf it if a price change occurs

(∆pf it , 0). Denote with θ the probability that a firm cannot adjust price between any

two consecutive periods and let the discount factor be equal to one.5 We consider the

problem of a firm choosing a reset pricing policy at time t = 0 that maximizes expected

intertemporal profits for every possible history. More precisely, a firm commits to a state-

contingent reset pricing policy, which is a mapping from the information set into the price

that the firm would like to set, i.e. pof it : I f it 7→ R. If no reset opportunity occurs, the firm

keeps the price constant. The time-0 problem can be written as:

max
{pof it}t≥0

E

 ∞∑
t=0

θt Π(pof it ,p
⋆
f it)

∣∣∣ I f i0 . (7)

Differentiation with respect to pof it and application of the law of iterated expecta-

tions for nested sets I f it ⊆ I f it+1 then permit obtaining the familiar recursive first-order

condition for the reset price:

pof it = (1−θ)p⋆f it +θEf it
{
pof it+1

}
= (1−θ)

(
µf + (1−Ω)mcrf it + pit

)
+θEf it

{
pof it+1

}
.

(8)

The reset price is the expected discounted present value of the static target prices, which

are equal to a linear combination of marginal cost and the industry price index with weight

equal to the degree of strategic complementarities (equation 5). Because firms have private

information, the forecast Ef it(p
o
f it+1) , Eit(p

o
f it+1) is possibly different across firms.

2.4 Full-Information Benchmark

We now illustrate how firms would compute the present value if they were able to observe

the real and nominal components of costs separately. Recursive substitution of the first-

5In the data, we are working at a monthly frequency at which a standard calibration of the discount factor is
0.998. The difference does not quantitatively impact our estimates. We consider the limit for the discount factor
approaching one from below for every limiting case of vanishing information friction.
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order condition (8) leads to the following formula for the present value:

pof it = µf + (1−θ)
∞∑
τ=0

θτEf it
{
(1−Ω)(m̃cf it+τ +mcnit+τ ) +Ωpit+τ

}
.

Making use of the cost dynamics (4) and the fact that firms observe real shocks m̃cf it ∈ I f it
in the full-information benchmark, the above reduces to:

pof it = µf +
(1−Ω)(1−θ)

1−θρ
m̃cf it + (1−Ω)mcnit +Ω

∞∑
τ=0

(1−θ)θτ Eit(pit+τ ).

The term involving m̃cf it is the expected present discounted value of future real shocks

conditionally on the value m̃cf it , which is increasing in the persistence of the shock ρ;

similarly, the subsequent term is the present value of the nominal shock, which simplifies

due to the random walk assumption. m̃cf it and mcnit enter the reset price separately to the

extent that ρ , 1, which shows that the information friction is binding whenever the real

and nominal components have different persistence.

Finally, under full information, the response of the reset price relative to the industry-

average reset price (poit) is solely a function of the real cost shocks:

∂(pof it − p
o
it)

∂mcnf it
=
∂(pof it − p

o
it)

∂m̃cf it
=

(1−Ω)(1−θ)
1−θρ

and, in particular, the response of the relative reset price to a real shock is constant for

constant parameters Ω, θ, and ρ. We will show in section 5.1 that this absence of state

dependence in the pass-through from real costs to relative prices is at odds with the data

and motivates the following departure from full information.

2.5 Subjective Expectations

We now describe the formation of subjective expectations under the information friction.

Firms form a common prior belief conditional on the common information set I it , then

receive the private signal sf it and form a posterior combining the prior and signal.

Denote with ∆pf it+1|t := (1−θ)(pof it+1−pf it) = (1−θ)∆pof it+1 the growth rate of prices

conditional on resetting at time t and no new shocks realized between t and t + 1, taking

into account the probability (1 − θ) of drawing an adjustment opportunity between t and

t + 1.6 It is immediate to show that ∆pf it+1|t summarizes the uncertainty of firms given

their information at time t. Indeed, subtracting pf it−1 from both sides of the first-order

6Whereas unconditional price changes are a mixture of the Bernoulli random variable and the shocks to costs,
conditional price changes are a linear function of the shocks and thus inherit the Gaussian distribution.
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condition (8) and rearranging we obtain:

(1−θ)(pof it − pf it−1) =
(1−θ)2

1−θ(1−θ)

(
p⋆f it − pf it−1

)
+

θ
1−θ(1−θ)

Ef it

{
∆pf it+1|t

}
. (9)

Differently from the full-information benchmark, the forecast of ∆pf it+1|t cannot be

obtained by directly using the processes for the two components, as the split is unobserved

and they have different persistence. Instead, firms compute the forecast as follows. First,

they forecast the industry distribution of price changes.7 We refer to such forecast as a

common “prior belief.”8 Because idiosyncratic shocks are Gaussian with finite present

values, the belief can be represented with a Gaussian distribution. We denote by πeit :=

Eit(∆pf it+1|t) the forecast of the industry inflation rate and by σ2
e,it := V it(∆pf it+1|t) the

forecast of the industry dispersion in conditional price changes:

∆pf it+1|t
∣∣∣ I it ∼N (

πeit , σ
2
e,it

)
. (10)

Firms realize that there will be a non-degenerate distribution of growth rates around a

common trend due to the presence of idiosyncratic shocks and nominal rigidity. The prior

variance σ2
e,it pins down the expected distribution under the normality assumption. The

expected inflation rate captures persistent co-movements of prices within an industry that

are due to the nominal component.

Firms generally expect their own path of prices to deviate persistently from the in-

dustry inflation rate. In fact, when a firm experiences a large positive realization of the

idiosyncratic cost shock, the firm’s price increases faster than the industry inflation rate.

Eventually, as time passes, the growth rate re-aligns with industry inflation as the idiosyn-

cratic shock is absorbed into the firm’s price level. However, even shortly-lived differences

in growth rates lead to possibly large fluctuations in prices.

To parsimoniously describe these fluctuations, we make use of the noisy signal. In

the spirit of Lucas (1972), we think about a signal as a noisy forecast of the price growth

rate of the firm.9 Absent the noise, firms would be able to perfectly anticipate the growth

rate in conditional prices if no new shocks realize, as in the full-information benchmark.

Away from full information, firms make use of the forecast of the industry distribution

7Beaudry et al. (2024) provides evidence that inflation expectations depend on a common component that
can be extracted from disaggregated data. Similarly to this paper, the authors rationalize the evidence with a
signal-extraction problem between common and idiosyncratic supply shocks.

8We notice that, as the real component washes out when aggregating within an industry, price adjustments
are i.i.d. over time, and firms are small in the industry, information regarding the specific history of a firm or the
realized signal about the real component are not informative to forecast the industry distribution.

9Differently from Lucas (1972), the uncertainty is here on the growth rate rather than the level of the price.
Though practically relevant when bringing the model to data, in principle the two models are capturing similar
forces. As an extreme example, consider a one-time unanticipated shock starting from an initial distribution with
pf it−1 = 0 for all firms in all industries.
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to “filter out” the noise in the signal. Formally, the signal is defined as the conditional

expectation given the signal:10

sf it := E(∆pf it+1|t | sf it).

We further assume that the signal has a time-invariant Gaussian distribution:

sf it = ∆pf it+1|t + ηf it , ηf it
∣∣∣ sf it i.i.d.∼ N (0,σ2

η ). (11)

The noise term ηf it is defined as the difference between the realization and the conditional

expectation. Several standard assumptions are implicit in equation (11). First, the noise is

i.i.d. with mean zero; this implies that, when averaging across firms within an industry, the

noise “washes out.” This implicitly assumes that a law of large numbers applies within the

industry and that there is no further uncertainty on top of the one induced by shocks and

the information friction. Second, σ2
η does not depend on time and is homogeneous across

all firms; though one could relax this assumption along the lines of Afrouzi et al. (2024),

we focus here on the time variation in beliefs that is induced by the evolution of σ2
e,it .

11

Using Bayes rule, the subjective expectation is given by a linear combination be-

tween the forecast of the industry inflation rate and the private signal:

Ef it(∆pf it+1|t) = (1− βit)πeit + βitsf it , (12)

where βit is the Kalman gain given by:

βit =
σ2
e,it

σ2
e,it + σ2

η
.

Equation (12) illustrates the solution of the signal-extraction problem. As firms cannot

disentangle between common nominal and idiosyncratic real shocks, which have different

persistence, the forecast is a linear combination between the forecast of the industry infla-

tion and the forecast of the firm’s price growth rate upon observing the signal. The Kalman

gain βit captures the effects of the persistence ρ, the dispersion of idiosyncratic shocks σ2
r ,

and variance of noise σ2
η . Moreover, βit fluctuates over time as a function of realized in-

flation πit ∈ I it , which is observed and thus affects the forecast of the distribution of price

10Though the signal appears on both sides of this definition, this normalization can be implemented directly
announcing to firms the conditional expectation in place of a signal. This follows from the fact that observing the
signal is equivalent to observing the conditional expectation. See e.g. the technical appendix in Vives (2010).

11This is motivated by (i) the difficulty of estimating precisely a time-varying volatility of firm-specific forecast
errors with our data, and (ii) the empirical observation that the dispersion in price changes varies over time in
response to shocks and these movements are largely anticipated by beliefs. See section 5 for details.
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changes via σ2
e,it . We discuss in section 5 the role of the latter channel for the endoge-

nous propagation of shocks. Finally, in the limit case of full information, the prior belief

becomes an improper uniform distribution (σ2
e,it →∞), and the forecast error becomes or-

thogonal to the expectation. In turn, Kalman gain converges to a constant (βit → 1) for all

industries in all periods.12

Identification of the Kalman gain. Before deriving the empirical specification that will

be estimated in the data, we provide an intermediate identification result. To understand

its relevance, suppose for the moment that the econometrician has data directly on expec-

tations Ef it(∆pf it+1|t) and the signal sf it in equation (12). Even in this case, identifying

the coefficient βit is not immediate, as one generally does not observe πeit . The next lemma

shows that identification of βit is achieved by a regression of posterior beliefs on signals

and an industry-by-time fixed effect. This insight will be then used to derive the empirical

specification of the model in the next section.

Lemma 1. Subjective expectations of (unconditional) price changes in deviation from the in-

dustry average are proportional to relative inflation rates:

Ef it(∆pf it+1)−
∫
Fi
Ejit(∆pjit+1)dj = βit ·

(
∆pf it+1|t −πit+1 + ηf it

)
, (13)

where βit is the Kalman gain.

Lemma (1) rearranges equation (12) using the fact that the prior is common to re-

place it with the average belief. Making use of the expected law of motion, it follows from

the lemma that a regression of the posterior belief of the price change (Ef it(∆pf it+1)) on an

industry-by-time fixed effect (FEit) and the ex-post realization of price changes (∆pf it+1)

identifies the same coefficient as that in equation (12), i.e. the Kalman gain:

Ef it(∆pf it+1) = FEit + βit
(
∆pf it+1 + ηf it

)
+uf it+1,

where the industry-by-time fixed effect is given by:

FEit =
∫
Fi
Ef it(∆pf it+1)df − βitπit+1,

and uf it+1 := βit(∆pf it+1|t − ∆pf it+1) denotes a mean-zero regression residual due to the

nominal rigidity. This error term has a time-varying volatility, function of βit . We make

use of the insight of lemma 1 to control for the (unobserved but common) prior belief in

the derivations of the Dynamic Pass-through Regression.
12We notice that the same limit is equivalently obtained by letting σ2

η → 0.
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Interpretation of the Kalman gain. The presence of incomplete information leads to a

form of discounting (Gabaix and Laibson 2017). In particular, we notice that our recursive

representation of the problem (equations 8 and 13) is consistent with the δ−β preferences

as in Harris and Laibson (2001), with δ ≈ 1 (omitted) parametrizing the exponential decay

and β ≤ 1 the hyperbolic discounting. In our model, hyperbolic discounting comes from

the imperfect ability of firms to forecast the present value of future markups over costs. In

turn, there is no “extra discounting” when forecasting a variable at time t + 1 compared to

a variable at time t + 2, as both enter the same calculation of the present value (∆pf it+1|t)

from the perspective of a firm that is setting prices at time t. We discuss evidence for this

interpretation in section 5.1 and argue that the Kalman gain is identified in the data from

the discounting of cost shocks at frequencies shorter than a month.

2.6 Dynamic Pass-through Regression

In section 2.3, we outlined how firms set prices for any given expected present value of

markups over marginal costs. Using the recursive representation of the first-order con-

dition, we characterized how the expectation of the future reset price is mapped into the

choice of the current reset price. In this sense, equation (8) can be viewed as defining an

operator that takes expectations as an input and returns the firm’s pricing choice as an

outcome. In section 2.5, we described the complementary step that leads to the forma-

tion of expectations: for any given collection of data points that results from the choices

taken by firms and the realizations of shocks, equation (13) provides the mapping from

data into expectations. Accordingly, the equation can be used to define an operator that

takes realized choices as inputs and returns expectations as an outcome. The Dynamic

Pass-through Regression combines these two operations with the expected law of motion

to obtain a mapping from data (future prices) into data (current prices). In turn, the map-

ping imposes a moment restriction of the joint distribution of current and future prices

and costs, which in practice boils down to a linear regression model with coefficient re-

strictions. Such a formulation and appropriate shifters then permit bringing the model to

the data to estimate structural parameters and assess the relative roles of the frictions in

shaping the pass-through from costs to prices.

Let us now derive the regression. Denote with a tilde the variables in deviation from

their industry average x̃f it := xf it −
∫
Fi
xjitdj.

Proposition 1 (Dynamic Pass-through Regression). Prices and costs satisfy the following re-

gression equation:

∆p̃f it =
(1−θ)2

θ

[
µf + (1−Ω)m̃cf it − p̃f it

]
+ βit · (∆p̃f it+1 + ηf it) + ũf it (14)
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where ηf it is the noise in signals and ũf it ⊥ I f it is a sampling error with cross-sectional mean

zero that depends on the realization of the Calvo fairy.

The proof of the proposition is in section A.3 of the Appendix. Let us now describe

the regression model (14). All the variables are demeaned with respect to the industry av-

erage; as argued in the previous section, this demeaning allows us to remove the variation

due to a common trend in beliefs.13 Demeaned price changes ∆pf it are then regressed on:

(i) a firm-specific intercept µf ; (ii) marginal cost mcf it (either real or nominal, demeaned);

(iii) the relative price level pit − pf it ; (iv) future price changes ∆pf it+1, demeaned. The

coefficient θ is identified from variation in marginal cost and relative prices, with asyn-

chronous movements of the two identifying also Ω. The Kalman gain is identified from

expected variation in future price changes. The two error terms, whose orthogonality with

respect to an instrument set will be addressed formally in section 4.1, are present because

(i) information is incomplete so that expectations depend on the noise in the signal; (ii)

when firms are choosing the reset price, the uncertainty regarding whether they can or

cannot adjust prices is not yet resolved. Finally, we notice that the presence of the relative

price level (pit − pf it) as a control follows directly from theory but it is often overlooked

in applied work. The reason why this might be the case is that, at the aggregate level, it

cancels out from the regression as it averages to zero in the cross-section. However, when

estimating pricing equations with micro-data, not only is it necessary to avoid the omitted

variable problem, but it is also essential to correctly identify the stickiness parameter θ

and the degree of real rigidities Ω (Gagliardone et al. 2023).

3 Data and Measurement

This section assembles a micro-level dataset that covers the manufacturing sector in Bel-

gium between 1995 and 2023 at a monthly frequency. We begin by outlining the various

data sources and subsequently discuss the mapping of the theoretical counterparts from

section 2 to the data. Finally, we discuss various features of the data that justify aspects of

the theoretical framework and are salient for identification of the Dynamic Pass-through

Regression.

3.1 Data Sources

Our analysis draws on five confidential data sources and combines detailed firm-level in-

formation on monthly production, costs, pricing decisions and subjective expectations on

13See e.g. Hazell et al. (2022) for a discussion of the importance of controlling for the trend in beliefs.
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future firm-level variables. Our dataset extends and enriches the annual dataset used by

Amiti et al. (2019) and the quarterly dataset used by Gagliardone et al. (2023, 2024).

First, the PRODCOM dataset tracks domestic firms’ monthly sales and physical

quantities sold for each narrowly defined (8-digit PC codes) manufacturing product (e.g.,

10.32.14.00 is “Pineapple juice”, 10.32.15.00 is “Grape juice” and 10.32.16.00 is “Apple

juice”). We use this highly disaggregated information to calculate domestic unit values

(sales over quantities) at the firm-product level.14 To account for the presence of foreign

competitors active in Belgian product markets, we obtain similar data from the administra-

tive records of Belgian customs declarations. Specifically, for each manufacturing product

sold by a foreign producer to a Belgian buyer, we observe monthly sales and quantity sold

for different products (8-digit CN codes, which are mapped to 8-digit PC codes), from

which we compute unit values of foreign competitors in the local market (Belgium).

Second, we use detailed administrative data to measure firms’ variable production

costs. Specifically, we obtain information on firms’ monthly purchases of intermediates

(materials and services) from their VAT declarations submitted to the tax authorities. Ad-

ditionally, we draw upon firms’ social security declarations to obtain a measure of their

labor costs (the wage bill).

Finally, we tap into the monthly NBB Business Survey (NBB-BS). This survey cov-

ers a representative panel of the Belgian manufacturing sector and is designed to provide

both a timely and bottom-up measure of various business cycle indicators (De Greef and

Van Nieuwenhuyze 2009). The NBB-BS includes one module that is backward-looking and

another that is forward-looking. The former tracks past realizations of price changes, in-

ventory, production, and demand. The latter captures firms’ subjective expectations (for

the next three months) such as future demand for its products, production, and price

changes. The survey is mainly qualitative in nature — i.e. firms typically have three reply

options: “decrease”, “no change”, “increase”. The qualitative nature reduces the reporting

burden on the firm (appropriate, as the survey is not mandatory) and reduces measure-

ment error.

3.2 Measurement

We now describe how we construct the variables that enter our empirical strategy. Ap-

pendix C provides additional details on the data cleaning procedures.

14PRODCOM surveys all Belgian firms involved in manufacturing production with more than 10 employees,
covering over 90% of production in each NACE 4-digit industry. The survey does not require firms to distinguish
between production and sales to domestic and international customers. Therefore, we recover domestic values
and quantities sold by combining information from PRODCOM with international trade data on firms’ product-
level exports (quantities and sales).
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Output prices. The variable of interest is the domestic price charged by firm f in in-

dustry i, Pf it := exp(pf it). Constructing this variable requires us to aggregate the product

dimension in PRODCOM to the firm-industry dimension. To that end, we exploit the fact

that the first four digits of this product classification follow the NACE taxonomy, i.e. the

official industry nomenclature in the European Union. In keeping with this taxonomy, we

define an industry i as the first four digits of the product codes. This classification opti-

mally balances a coherent definition of the industry (which is mostly precise if narrow)

with the ability to identify an appropriate set of competitors (both domestic and foreign).

This leads to 158 manufacturing industries, distributed across 9 (2-digit) manufacturing

sectors (reported in Table A.1).

Due to repeated product code revisions, a consistent 8-digit product code taxonomy

does not exist across the entire sample period. Therefore, we compute the sequence of price

changes across consecutive time periods (t and t+ 1) by mapping the product codes at t+ 1

to their corresponding codes at t, aggregating them at the firm-industry level, and recov-

ering the time series of the firm-industry price index (in levels) by concatenating quarterly

price changes. More precisely, we compute the change in the firm-industry price index,

Pf it/Pf it−1, using the most disaggregated level in the data. For domestic producers, the

finest level of aggregation is the firm×8-digit PC product code level. For foreign competi-

tors, it is the importing-firm×source country× 8-digit PC product code level.15 Approx-

imately half of the domestic firms in our sample are multi-product firms, meaning they

produce multiple 8-digit products within the same industry. For these entities, we com-

pute the price change by aggregating changes in product-level prices using a Törnqvist

index:

Pf it/Pf it−1 =
∏
p∈Pf it

(Ppf it/Ppf it−1)s̄pf it .

In the formula above, Pf it represents the set of 8-digit products manufactured by firm f

in industry i, Ppf it is the unit value of product p in Pf it , and s̄pf it is a Törnqvist weight

computed as the average of the sale shares between t and t − 1: s̄pf it :=
spf it+spf it−1

2 . Finally,

we construct the time series of price levels Pf it by concatenating monthly changes.16

Using a similar approach, we construct the price index of competitors for each do-

15In the raw customs data, products are measured using the more disaggregated CN 8-digit product classi-
fication. We map the CN product codes in the customs data to PC product codes used in PRODCOM using the
official bridge tables available on the Eurostat web page. See Appendix C.1 for additional details.

16 Let t0f i denote the first month when f appears in our data. Starting from a base period Pf i0, which we can

normalize to one, prices are concatenated using the formula: Pf it = Pf i0
∏t
τ=t0f i+1

(
Pf iτ /Pf iτ−1

)
. The normaliza-

tion of the level of the firm’s price index in the base period, Pf i0, is one rationale for the inclusion of firm fixed
effects in our empirical specifications downstream.
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mestic firm by concatenating monthly changes as follows:

P
−f
it /P

−f
it−1 =

∏
k∈Fi /f

(Pkt/Pkt−1)s̄
−f
kt . (15)

Here, s̄−fkt := 1
2

(
skt

1−sf it + skt−1
1−sf it−1

)
represents a Törnqvist weight, constructed by averaging the

residual revenue share of competitors in the industry at time t (net of firm f revenues)

with that at time t − 1.17 Note that the set of domestic competitors for each Belgian pro-

ducer, denoted as Fi , includes not only other Belgian manufacturers operating in the same

industry but also foreign manufacturers selling the same goods to Belgian customers.

Marginal costs. To derive an empirical counterpart to marginal cost in equation (3), we

follow Gagliardone et al. (2023, 2024) and assume a cost structure in which the nominal

marginal cost of a firm is proportional to its average variable costs: MCnf it = (1+νf )AVCf it .

The coefficient νf captures the curvature of the short-run cost function, and it is inversely

related to the firm’s short-run returns to scale in production (νf ≡ 1/RSf − 1). Using the

definition of average variable costs (total variable costs over output, T VCnf it/Yf it) and ap-

plying a logarithmic transformation, we have that firm-level log-nominal marginal cost is

given by:

mcnf it = (tvcnf it − yf it) + ln(1 + νf )

In the data, we measure total variable costs as the sum of intermediate costs (materials

and services purchased) and labor costs (wage bill). While the former is available at the

monthly level, the latter is observed at a quarterly frequency and split equally across the

three months of the quarter.18

We compute a quantity index by dividing a firm’s domestic revenue by its domestic

price index.19 Firm-specific short-run returns to scale are not directly observable in the

data. Therefore, to the extent that individual firms’ production technologies deviate from

constant returns to scale (νf , 0), our measure of log-marginal costs would be missing an

additive constant. Below, we will rely on firm fixed effects to neutralize the impact of this

unobserved factor.

17As with the firm’s price index, the level of the price index of competitors is constructed by normalizing the
first period to one and concatenating quarterly changes. Also, in this case, the normalization is immaterial for
estimation purposes as our empirical model always includes firm fixed effects.

18For multi-industry firms, we allocate the observed total firm-level variable cost to individual firm-industries
according using the sales-share of that industry.

19Specifically, we compute Yf it = (P Y )f it /P̄f it , where P̄f it denotes the firm-month domestic price index. For
single-industry firms, P̄f it coincides with the firm-industry price index Pf it . For multi-industry firms, we con-
struct P̄f it as an average of the different firm-industry price indexes using as weights the firm-specific revenue
shares of each industry.
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Table 1: Summary statistics

Panel (a): Firm characteristics

Mean p. 5 p. 25 p. 50 p. 75 p. 95

Number of employees 102 9 18 32 66 362

Turnover 3037 46 175 439 1245 8368

Number of products 3.26 1 1 2 3 11

Number of industries 1.05 1 1 1 1 1

Revenue share of 97.63 100 100 100 100 100
main industry

Number of consecutive 99.55 24 45 75 132 261
months in the sample

Panel (b): Product market structure

Mean p. 5 p. 25 p. 50 p. 75 p. 95

Market share of the firm 6.83 0.14 0.55 1.55 5.33 35.19
within the industry

Market share of the firm 0.58 0.01 0.03 0.09 0.26 1.77
within the broad sector

Market share of the firm 0.06 0 0 0.01 0.02 0.16
within manufacturing

Panel (c): Distributional moments

Mean p. 5 p. 25 p. 50 p. 75 p. 95

∆pf it 0.00 −0.22 −0.02 0.00 0.03 0.23

V t(∆pf it) 0.02 0.01 0.02 0.02 0.02 0.03

Skewt(∆pf it) 0.00 −0.39 −0.14 −0.01 0.17 0.40

πit 0.00 −0.17 −0.03 0.00 0.04 0.17

V t(πit) 0.01 0.01 0.01 0.01 0.02 0.02

Skewt(πit) −0.01 −1.57 −0.57 −0.02 0.65 1.47

Notes. The summary statistics reported in this table refer to the sample of domestic producers in PRODCOM. The
sample includes 5,738 firms observed over 344 months (1995:m1—2023:m12), totaling 596,412 observations.
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3.3 Summary Statistics

Our final sample includes 5,738 firms observed over 344 months (1995:m1—2023:m12),

resulting in a total of 596,412 observations. Table 1 presents summary statistics of our

dataset and documents (i) characteristics of the firms in our dataset, (ii) product market

features and (iii) distributional moments of the variables of interest.

Firm characteristics. Our dataset covers the lion’s share of domestic manufacturing pro-

duction in Belgium. Table 1 Panel (a) documents that the average firm in our dataset

employs 102 employees (measured in full-time equivalents) and has a domestic turnover

(sales) of =C3 million per month. Approximately half of the domestic firms in our sample

are multi-product firms, meaning they produce multiple 8-digit products within the same

industry. Nonetheless, the vast majority of the firms in our sample specializes in only one

manufacturing industry. Even for those firms that are active in multiple industries, the

contribution of the main industry (i.e. the industry from which most revenue accrues) to

total firm revenues is, on average, 98% (median 100%). For the few multi-industry firms,

we treat each industry as a separate firm.20 Finally, our data allow us to track individual

firms over a long time span. On average, we observe firms for approximately 8.5 consecu-

tive years (100 months). This feature of the data is particularly important for identification

purposes as a long time series enables us to include firm fixed effects in our empirical mod-

els to control for time-invariant confounding factors without suffering from the classical

Nickell bias (Nickell 1981) that may complicate estimation with dynamic panel models.

Product market structure. Our demand framework in section 2 onboards a role for strate-

gic complementarities within industries. Table 1 panel (b) highlights that this modeling

approach is warranted. The typical sector is characterized by a large number of firms with

small market shares —the median within-industry share is 1.55%— and a few relatively

large producers. To the extent that large firms internalize the effect of their pricing and

production decisions on industry aggregates and strategically react to the pricing deci-

sions of their competitors, the monopolistic competition benchmark would effectively be a

poor approximation.

At the same time, our framework does not feature strategic interactions across the

boundary of the industry. This is justified, as the largest firms are small compared to the

volume of economic activity of their macro sector (e.g., “textile manufacturing” or “chem-

icals and chemical products”) and, even more so, compared to the volume of economic ac-

20Because most firms operate in only one industry, and the main industry accounts for the lion’s share of sales
of multi-industry firms, all our results presented below are essentially unchanged if we restrict the sample to the
main industry for each firm.
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tivity in the whole manufacturing sector in Belgium. It is therefore reasonable to assume

that even the largest producers do not internalize the effect of their pricing and production

decisions beyond the perimeter of their own industry.

Distributional moments. Table 1 panel (c) reports the percentiles of moments of the

distribution of price changes. First, our sample displays a trend inflation of approximately

zero at a monthly frequency. Second, on average the dispersion in price changes is approxi-

mately 0.14, but displays some variation over time (0.1−0.17) within the 95%-range. Third,

the skewness of price changes is zero on average but ranges between negative and positive

values. Finally, as indicated by the last three rows of the panel, a significant portion —

though not all— of the variation in price changes and the moments of the distributions is

due to differences across industries.

Survey responses. Of the baseline sample documented in Table 1, 712 firms also re-

spond to the NBB-BS. For this subsample, we leverage four survey questions which will

serve different purposes in our analysis in section 4. In particular, we exploit the realized

direction of the price change in the current period (sign(∆pf it)) and the expected direction

of this price change in the preceding period (Ef it−1(sign(∆pf it))). Similarly, we exploit

today’s realized variation in demand (sign(∆Df it)) as well as the expected direction of the

change (Ef it−1(sign(∆Df it))).21 Panel (a) of Table 2 reveals that, on average, 79.3% of firms

keeps prices fixed compared to the preceding month (consistent with U.S. evidence for

producer prices from Nakamura and Steinsson 2008). Similarly, on average firms expect

not to update prices 74.55% of the time. Around 70.79% of the firms expects demand to

remain the same in the upcoming period. In practice, however, realized demand varies

more than anticipated (decreases 26.47% of the times and increases 20.75% of the times).

The fact that firms systematically underestimate the probability of a change in demand

can be interpreted as a sign of incomplete information, with expectations “moving less”

than realizations (Angeletos et al. 2021).

Though panel (a) suggests the presence of incomplete information, panel (b) shows

consistency with rational behavior. In the latter, we compare the realized changes in

prices/demand at time t with the shift that was expected in the preceding month (time

t − 1). The table reveals that firms typically follow up on their expected pricing actions.

E.g., for 84.30% of observations where prices are kept constant, the status quo was antic-

ipated the month before. A price increase (decrease) is anticipated in 61.99% (50.75%) of

21 We use the question regarding realized price changes from the NBB-BS to address measurement concerns
regarding pf it , which is based on product-level unit values. Indeed, as shown by Eichenbaum et al. (2014),
monthly variation in unit values tends to overstate the frequency of small price changes even with small mea-
surement errors. We circumvent this measurement concern by relying on the NBB-BS to identify price changes.
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Table 2: Summary statistics: NBB-BS

Panel (a): Moments

Decrease Unchanged Increase s.d. skewness

sign(∆pf it) 9.03 79.31 11.66 0.45 0.11

Ef it(sign(∆pf it+1)) 8.69 74.55 16.76 0.50 0.16

sign(∆Df it) 26.47 52.78 20.75 0.68 0.07

Ef it(sign(∆Df it+1)) 15.79 70.79 13.42 0.54 -0.02

Panel (b): Expectations vs. realizations

sign(∆pf it)

Decrease Unchanged Increase

Decrease 50.75 4.79 3.68

Ef it−1(sign(∆pf it)) Unchanged 41.27 84.30 34.33

Increase 7.98 10.91 61.99

sign(∆Df it)

Decrease Unchanged Increase

Decrease 32.34 10.34 14.32

Ef it−1(sign(∆Df it)) Unchanged 55.70 79.14 60.51

Increase 11.96 10.52 25.18

Notes. The summary statistics reported in this table refer to the sample of domestic producers in PRODCOM that
also participate to the NBB-BS. The subsample includes 712 firms and represents a total of 59,731 observations.
sign(·) variables are encoded as -1 (“decrease”), 0 (“unchanged”), or +1 (“increase”). Columns 2—4 sum to 100%.
Panel (b) depicts a tabulate of expectations vs. realizations of demand and prices. Individuals columns sum to
100%.
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Table 3: Persistence of the cost components

mcnt mcnit m̃cf it

ρ 0.997 0.994 0.926
(0.018) (0.009) (0.036)

P-value 0.733 0.316 0.039

Notes. Estimates of autoregressive processes of order one. Newey-West standard errors are in brackets. P-values
for the null hypothesis of a unitary coefficient are reported. Similarly to the tests that we report, a Dickey-Fuller
test for the aggregate time series cannot reject the null hypothesis of unit root.

cases. The instances in which they expect to increase (decrease) the price but end up de-

creasing (increasing) are rare: 7.98% (3.68%) of cases. This observed pattern confirms that

firms seem rational in the way they form expectations, with differences from expectations

and realizations likely attributable to new information revealed within the month. In fact,

in the vast majority of cases, firms correctly forecast the direction of their price changes.

Similar conclusions hold for demand realizations and expectations, albeit with less pro-

nounced patterns. Therefore, expected price and demand changes are strong predictors of

realized price and demand changes, a feature that we will exploit in section 4.

Marginal costs dynamics. In Table 3 we offer empirical evidence supporting the pro-

cesses for marginal cost mcnit and m̃cf it posited in equation 4. In particular, we regress our

marginal cost measure on its one-month lag, instrumenting the latter with a two-month

lag to reduce downward bias due to measurement error. We find strong evidence in favor

of a random walk assumption formcnit and an AR(1) process with ρ < 1 for m̃cit . The aggre-

gate marginal cost index (constructed as a weighted average of firm-level costs), mcnt , also

follows a random walk.

4 Econometric Framework

In this section, we discuss the identification and estimation of three parameters of the

regression (14), namely the degree of nominal rigidities θ, the degree of strategic comple-

mentarities Ω, and the Kalman gain βit . As the presence of a time-varying coefficient βit
leads to additional challenges for estimation, we take the route of first studying the re-

gression with constant coefficients, which can be interpreted as a local average treatment
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effect. This exercise is informative also to confirm a departure from the full-information

rational-expectation (FIRE) benchmark, which would predict an estimate of βit = 1 for all

industries in all periods. We then explore the cyclical properties of βit in section 5.

4.1 Parameter Identification

We now discuss formally how identification of the parameters is achieved using data on

subjective expectations and lags of observables. From the Dynamic Pass-through Regres-

sion (equation 14), identification requires finding a set of instrumental variables I IVf it that

are relevant and satisfy the exclusion restriction:

E

(
ηf it + ũf it | I IVf it

)
= 0,

where ηf it is the noise in the signal and ũf it is the sampling error due to the nominal

rigidity. First, we notice that, by proposition 1, ũf it is uncorrelated with any variable in the

information set I f it . Second, ηf it is i.i.d. over time and therefore uncorrelated with any

variable that is lagged. Therefore, we include lags of observables which help identification

while satisfying the exclusion restriction as discussed in more detail in the next subsection.

Nevertheless, to identify the Kalman gain one needs to use variation that comes from

news that is not contained in lags. We address this challenge by leveraging the data on sub-

jective expectations from the NBB-BS. However, isolating variation in realized prices that

comes from expectations and is orthogonal to the noise in the signal is a daunting task. The

reason is that expectations are directly a function of the noise in the signal from equation

(12). Consequently, the expectation itself is generally not a good shifter of realizations (un-

der incomplete information) because it is correlated with the error term of the Dynamic

Pass-through Regression. However, we can show that a coarser transformation of the ex-

pectation —the expected sign of a price change— is a valid shifter under a weak condition

of symmetry on the shock distribution that is satisfied, for example, under our assumption

of Gaussian cost shocks.

Proposition 2 (Identification). Suppose that the unconditional distribution of price changes

is symmetric, i.e. P(∆pof it+1 > 0) = P(∆pof it+1 < 0). Then the expected sign of a price change

satisfies the exclusion restriction:

Cov
(
ηf it , Ef it(sign(∆pf it+1))

)
= 0.

The intuition for the proof (in Appendix A.3) is that, as we are assuming no trend

inflation and shocks are Gaussian, the unconditional probability of a price increase equals

that of a price decrease. Because the subjective expectation of the sign is given by the
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difference between the two conditional probabilities, and firms can recover the noise in the

signal after setting prices, the unconditional covariance with the error term is exactly zero

by the law of iterated expectations. In other words, when estimating the regression across a

sufficiently vast sample size that includes both expansion and recession periods, the noise

is correlated with the expected “size” of the adjustments, but not with the expected “sign.”

Proposition 2 is a useful result. Generally, even with perfect data on expectations,

identification of the Kalman gain is a complex task. However, a simpler statistics like

the expected direction of a price change, which is arguably easier to elicit in surveys and

less prone to measurement error, is sufficient to identify the parameters of the moment

condition that relates current and future price changes from data on realized prices.

In the next section, we discuss the details of the implementation and results.

4.2 Baseline Analysis

Specification. We begin by bringing the Dynamic Pass-through Regression (14) to the

data for the special case of constant and homogeneous coefficients βit = β for all i and t.

This leads to the baseline specification:

∆pf it = FEf +FEit +
(1−θ)2

θ

(
(1−Ω)mcnf it − pf it

)
+ β∆pf it+1 + εf it , (16)

where FEf is a firm fixed effect, FEit is an industry-by-time fixed effect, and εf it is a com-

posite regression residual. Under the benchmark model with full information and rational

expectations (FIRE), β = 1 and the coefficient is redundant. Therefore we can test for the

presence of information frictions by checking whether the coefficient is statistically smaller

than one.

Instrument set. As shown in proposition 1, lags of endogenous variables are orthogonal

to both the noise in the signal, which is i.i.d. over time, and the sampling error due to

the nominal rigidity, which is orthogonal to the information set I f it . Moreover, as we fur-

ther discuss in the next paragraph, they provide power for identification. Therefore, we

include lagged marginal cost (in the previous quarter) and lagged price level (in the previ-

ous month) in the instrument set. These lags deal with a number of potential identification

concerns which include measurement error in marginal cost, which is arguably the main

concern regarding marginal cost (Amiti et al. 2019), as well as the Nickell bias which can

arise in the context of dynamic panel models (Nickell 1981).

In addition, we include the contemporaneous expected sign of a price change and

three lags of it, which is a valid instrument under the assumption of proposition 2. This
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leads to the following baseline instrument set:

IVf it =
{{
Ef it−τ (sign(∆pf it−τ+1))

}3
τ=0

,
{
mcnf it−τ

}6
τ=3

, pf it−2

}
.

Sources of identification. We now discuss how the instrument set and set of fixed effects

provide identification power for the parameters of interest. First, from the equation for

the static target price (5), the degree of strategic complementarities (Ω) is identified from

contemporaneous movements in marginal cost (mcnf it) relative to the industry price index

(pit), which captures movements in markups. Therefore, Ω is identified only from industry

cross-sectional variation within the period t. Such variation is leveraged by our specifica-

tion by including industry-by-time fixed effects and lagged marginal cost as a shifter of

current marginal cost, which is highly persistent.

Second, from the expected law of motion, the degree of nominal rigidities (θ) is

identified from movements in the current price level pf it due to changes in the target price

pof it relatively to the price level in the previous period pf it−1. Hence, θ is identified from

time-series variation across periods t and t−1. This variation is produced by including lags

of both marginal cost and the firm price level in the instrument set.

Third, from the equation for the reset price (8), the Kalman gain β is identified from

variation in the expected present value of future marginal costs relative to the current value

of marginal cost. Therefore, β is identified from time-series variation across periods t and

t + 1. We leverage this variation by including both realized marginal cost and expectation

of future price changes, which convey information regarding the expected evolution of

future costs.

Implementation. Whereas industries are narrowly defined at the four-digit NACE level,

we allow for correlated shocks across industries in the computation of standard errors. In

turn, we cluster standard errors at the two-digit level so that firms that are in different

industries but in the same sector can be exposed to common shocks.

We estimate the baseline regression (16) via the generalized method of moments

(Hansen 2010). This allows us to impose the coefficient restrictions from theory and

strengthen the identification. We employ a two-step estimator with a weighting matrix

at the same level as the clustering (two-digit NACE).

Finally, all the regressions are weighted using Törnqvist weights, i.e. a weighted

average between current and (one-month) lagged revenue weights. This weighting scheme

replicates accurately the construction of the aggregate price indexes (section 3.2).

Baseline results. Results from estimating regression (16) are reported in Table 4, column

A. First, the estimate of the degree of nominal rigidities θ = 0.832 (0.008) is precisely
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estimated. This number is consistent with a substantial role for the nominal rigidity in

reducing the pass-through at a monthly frequency as it implies an average duration of a

price spell of roughly a year. As price changes are infrequent, firms’ behavior is forward

looking.22

Second, the estimate of the degree of real rigidities Ω = 0.597 (0.022) is also remark-

ably precise. This number implies that real rigidities alone reduce the pass-through by

roughly 60%, that is firms adjust markups in response to changes in costs by absorbing a

large fraction of the shock into their profits. This is in line with estimates obtained by pre-

vious literature that employ special cases of our Dynamic Pass-through Regression (Amiti

et al. 2019 and Gagliardone et al. 2023).

To the best of our knowledge, this is the first paper providing an estimate for β using

data on firms’ costs, prices, and expectations. The estimate β = 0.823 (0.027) is remarkably

precise. As the test for the full-information rational expectation hypothesis shows, this

value implies a statistically significant departure from the full-information benchmark of

β = 1 at any standard confidence level. Moreover, the estimate indicates a substantially

higher “discounting” by about 20% than what is used in standard calibrations. Consis-

tently with evidence from previous literature (e.g. Angeletos et al. 2021), expectations of

future price changes seem to move significantly less than realizations. This leads to a form

of present bias/myopia or hyperbolic discounting in price setting in response to shocks

(e.g. Farhi and Werning 2019, Garcı́a-Schmidt and Woodford 2019), which can be ratio-

nalized by information frictions (e.g. Gabaix and Laibson 2017, Angeletos and Lian 2018,

Angeletos and Huo 2021). Notably, our evidence shows that the additional discounting

is present at the micro-level and therefore is not (only) due to aggregation but (also) to

individual behavior.

Finally, Hansen’s J overidentification test does not reject the null hypothesis of valid

instruments for any standard confidence level, confirming that instruments are plausibly

exogenous in line with the theory.

The estimates of the structural parameters imply an estimate for the overall pass-

through from costs to prices. In particular, the effect of a contemporaneous shock to

marginal cost is (1−θ)2

θ (1 −Ω) ≈ 1.6%, which is a large number at monthly frequency. To

put this number in context, we will show in section 6 that this coefficient maps under em-

pirically plausible assumptions directly into the slope of the marginal cost-based Phillips

curve, and implies an estimate of the slope at a quarterly frequency above 5%.23 Though

this number is consistent with our earlier work (Gagliardone et al. 2023), it is an order of

22To provide additional confidence regarding this estimate, we compute the fraction of firms that do not
change price in a month using additional PPI micro-data and obtain an estimate of 0.8 (0.023), which aligns
closely with the regression result.

23The quarterly slope is computed as (1−.7)2
.7 (1−Ω) ≈ 7.7% because Ω is independent of the frequency.

29



Table 4: Estimation of the Baseline Regression

(A) (B) (C)

θ 0.832 0.813 0.814
(0.008) (0.011) (0.008)

Ω 0.597 0.636 0.645
(0.022) (0.028) (0.016)

β 0.823 0.642 0.654
(0.027) (0.054) (0.041)

Firm FE y y y
Ind × time FE y y y

Demand instrument n y n
Demand control n n y

Hansen’s J overidentification test

χ2-stat 5.925 5.911 5.520
P-value 0.431 0.433 0.477

Test of FIRE β = 1

Z-stat 6.44 6.67 8.37
P-value 0.000 0.000 0.000

Notes. This table provides GMM estimates for the baseline regression (16) at monthly frequency:

∆pf it = FEf +FEit +
(1−θ)2

θ

(
(1−Ω)mcnf it − pf it

)
+ β∆pf it+1 + εf it .

Column A’s orthogonality condition is implemented by using the baseline instrument set. Column B augments the
instrument set with expectations of future demand growth. Column C generalizes previous demand systems by
allowing for firm demand shocks, which leads to an additional control for Ef it(sign(∆Df it+1)) in the population
regression (14). Regressions are weighted using Törnqvist weights. GMM is implemented using a two-step
estimator with a weighting matrix and standard error clustering at the sector level.
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magnitude larger than previous estimates from the macroeconomic literature (e.g. McLeay

and Tenreyro 2020, Hazell et al. 2022) and suggests a relatively steep cost-based Phillips

curve even in “normal times.” A novel lesson of this paper is that there is a substantial

dampening of the pass-through of news regarding future costs. In particular, the effect of

the latter is given by β (1−θ)2

θ (1 −Ω) ≈ 1.2%. This number is surprisingly low as it implies

that a monetary policy announcement of a change in policy that will be implemented only

a month later leads to a 20% lower effect on inflation (and thus a much larger effect on out-

put and unemployment) than the same policy if implemented immediately. Moreover, this

estimate provides empirical validation for theories that introduce departures from full-

information rational expectations in the Phillips curve as a way to address the forward

guidance puzzle (e.g. Gabaix 2020) or connect with experimental evidence on inflation

expectations (Coibion et al. 2018a, Coibion et al. 2020).

4.3 Robustness to Demand

In this section, we extend the baseline analysis to incorporate information about the ex-

pected demand growth, which is arguably a factor influencing firms’ price setting.

Demand expectations in the instrument set. Under the demand system (1), knowledge

by firms of future demand Df it+τ for τ > 0 improves the ability of the firm to forecast fu-

ture marginal costs to the extent that returns to scale are not constant (νf , 0), and thus

their ability to choose a reset price. That is, any available information regarding future

demand should be incorporated into pricing decisions. Nevertheless, forecasts of future

prices Ef it(∆pf it+1) should already summarize all the relevant information for pricing de-

cisions, including that related to future demand. If this is not the case in practice, it is

useful to directly include measures of expected demand growth, Ef it(sign(∆Df it+1)), in

the instrument set IVf it . Accordingly, in column B of Table 4, we extend the instrument set

to include subjective forecasts of demand growth from the survey:

IVf it =
{{
Ef it−τ (sign(∆pf it−τ+1))

}3
τ=0

,
{
Ef it−τ (sign(∆Df it−τ+1))

}3
τ=0

,
{
mcnf it−τ

}6
τ=3

, pf it−2

}
.

The estimates of both θ and Ω remain remarkably stable, showing robustness to

the inclusion of the additional instrument. The estimate of β = 0.642 (0.054) is lower

than that in column A, but not statistically different at 95% confidence level. Hansen’s

J test is again robustly passed and, moreover, the test of FIRE is soundly rejected at any

standard confidence level. Overall, this exercise indicates that including a demand shifter

in the instrument set does not alter the conclusion of departure from the full-information

rational-expectation benchmark.
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Demand shocks. Alternatively, we can replace the assumption regarding the demand

system (1) and allow for firm-specific i.i.d. demand shocks, ϕf it+1 < I f it , as follows:

Df it := d(pf it , pit , ϕf it+1) ·Yit ∀f ∈ Fi . (17)

Under the stochastic demand system (17), the loglinear markup varies also because of firm

demand shocks and the static target price (equation 5) becomes:

p⋆f it = µf + (1−Ω)(mcnf it +ϕf it+1) +Ωpit .

Following similar steps as before, the baseline regression (16) under the stochastic demand

system becomes:

∆pf it = FEf +FEit +
(1−θ)2

θ

[
(1−Ω)

(
mcnf it +Ef it(ϕf it+1)

)
− pf it

]
+ β∆pf it+1 + εf it , (18)

Here Ef itϕf it+1 is a relevant control: failure to observe demand expectations would result

in an omitted variable bias if demand expectations are systematically correlated with the

present value of marginal cost. We measure Ef it(ϕf it+1) with Ef it(sign(∆Df it+1)) and use

the same instrument set as specification A. Column C of Table 4 shows that this system-

atic correlation seems modest: when controlling for demand expectations, estimates of all

the parameters are within the confidence bands of the baseline specification at 95% confi-

dence level. Moreover, the additional robustness leads to similar results as including the

expectation in the instrument set (column B), and thus does not affect the conclusion of a

departure from full information.

5 State Dependence of the Pass-through

In the aftermath of the inflation surge that occurred between 2021 and 2023, the macroe-

conomic literature has devoted significant effort to reconciling the pre-pandemic evidence

of the low aggregate pass-through from measures of real activity to inflation with the

steep rise in prices that followed the sudden spike in energy costs. One explanation that

seems able to explain the recent events is a state-dependent pass-through, which is low in

“normal times” but increases as soon as large shocks hit the economy. Such a nonlinear

response of prices would have key implications for the quantification of monetary non-

neutrality because it would imply that the same interest rate change has different effects

depending on the pre-policy state of the economy, as well as the mix of shocks that are

driving the business-cycle fluctuations.

However, the channels through which such nonlinearities are generated are still
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largely subject to debate.24 In this section, we provide reduced-form micro-evidence that

the pass-through is indeed state-dependent. We will then argue that our model under full

information and nominal rigidities à la Calvo would not be able to explain such evidence,

but the model with information frictions can rationalize it. Finally, we provide empirical

validation of the mechanism through information frictions by extending the Dynamic Pass-

through Regression and using data on the dispersion in beliefs that speak directly to the

specific features of the model. We argue that, though information frictions hardly account

for the entire time variation of the pass-through, they can nevertheless explain a relevant

share of its fluctuations. This suggests that the interaction between information frictions

and other possible sources of state dependence is likely to be quantitatively important.

5.1 Reduced-form Evidence of State-Dependent Pass-through

We now discuss evidence that the pass-through is state-dependent. We aim to provide

such evidence in reduced form without relying heavily on the structure of the model from

section 2. Nevertheless, the regression that we run is consistent with the structural ap-

proach of the Dynamic Pass-through Regression (equation 14), and results can be inter-

preted through the lenses of the model. In section 5.3, we then impose additional structure

and discuss identification more formally.

The basic idea behind our reduced-form approach is that, under nominal frictions,

prices are forward-looking and therefore correlated with leads of marginal cost. This cor-

relation should persist until prices are reset, after which price changes become indepen-

dent of past cost shocks. The decline in the correlation should reflect not only the effect

of the nominal friction but also the persistence of the shocks and the discounting that

firms use to compute the present value. With real rigidities, this correlation is also me-

diated by movements in the industry price index, which controls for changes in markups

due to movements in relative prices. The above reasoning leads to a regression of relative

price changes (change over time of firm price relative to the industry price) on relative

cost shocks (change over time of firm costs relative to the industry average), which can be

implemented including fixed effects as follows:

24Cavallo et al. (2023), Blanco et al. (2024a), Blanco et al. (2024b), and Gagliardone et al. (2024) provide
evidence that the frequency of price changes is state-dependent and rationalize it using menu cost models as in
Golosov and Lucas (2007) and Nakamura and Steinsson (2008). On the other hand, Pfäuti (2023), Weber et al.
(2023), Bracha and Tang (2024), and Afrouzi et al. (2024) provide evidence that attention is state-dependent and
rationalize it using models with incomplete information. As the frequency of price changes acts in the menu cost
model effectively as a time-varying discount factor (see equation 6 and related discussion in Dotsey and King
2005, or Alvarez and Lippi 2022), it is particularly challenging to disentangle the two stories using data. We
provide evidence in section 5.3 that even accounting for the observed time variation of the frequency of price
changes still leaves room for state dependence of the estimated Kalman gain.
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Figure 1: Reduced-form Evidence of State-dependent Pass-through
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Notes. Estimates of the reduced-form coefficients of regression (19). The red dashed line (with yellow bands)
is computed on a subsample corresponding to all the firm-level observations belonging to an industry with an
inflation rate in the top 10% of all the industry inflation realizations (corresponding to about 8%). The black
line (with blue bands) is estimated on the remaining subsample. Confidence bands at 90% are computed using
robust standard error. Regressions are weighted using Törnqvist weights.

∆pf it = FEf +FEit +
∑
τ≥0

Λit,τ ·∆mcf it+τ +Λ0pf it−1 + εf it . (19)

As before, FEf is a firm-specific intercept and FEit is an industry-by-time fixed effect,

which implies that all the variables are demeaned with respect to the industry average.

The lagged price is included as a control for shocks up to time t − 1.

The pass-through coefficient at horizon τ is given by Λit,τ , which can in principle

be heterogeneous across industries and time-varying. It follows from the derivations in

section 2.4 that Λit,τ does not depend on time in the full-information benchmark to the

extent that parameters are not time-varying:

Λit,τ = Λτ =
(1−Ω)(1−θ)2

1−θρ
ρτ .

We now argue that this prediction of a constant pass-through of the full-information

benchmark is at odds with the reduced-form evidence. Figure 1 plots the coefficients of

the regression estimated on the two subsamples: the red dashed line corresponds to a

subsample of industries-month pairs in which industry inflation was “large” in absolute

value, corresponding to the top 10 percent of all realizations of industry inflation rates (in

absolute value, approximately 8% or higher), whereas the solid black line is estimated over

the remaining part of the sample. The two subsamples reflect disproportionately historical

periods of large inflation or deflation such as the surge in 2021-2023 or the recession in

2009-2010, but also exploit industry-level variation in inflation which has substantially

more volatility than aggregate inflation.
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Let us now analyze the estimates.25 First, consistently with the presence of a nomi-

nal friction, contemporaneous price changes are correlated with idiosyncratic cost shocks

up to about a year. After that, coefficients are not statistically significant. In turn, current

prices do not reflect innovations beyond the one-year horizon. This is in line with our

structural estimates from Table 4 that imply an average duration of a price spell of about

a year.

Second, there is a steep drop in the correlation when moving from a contempora-

neous cost shock to the innovation one month ahead, after which the correlation declines

more smoothly. This is consistent with a role for a form of present bias or hyperbolic dis-

counting (Gabaix and Laibson 2017) in price setting as discussed in section 2.5. In other

words, the steep drop suggests that the precision of the information regarding future costs

has a discontinuity at very short horizons. This feature of the cost-price correlation is what

identifies the Kalman gain in the structural estimation.

Third, the two subsamples lead to statistically different pass-through estimates. We

interpret this as evidence of a dependence of the pass-through on industry variables, and,

in particular, industry inflation. In fact, we notice that there is no a-priori reason why

the estimates over the different subsamples should be statistically different, with the esti-

mated pass-through being larger in high-inflation industries. In particular, relative price

changes need not mechanically correlate more with idiosyncratic cost shocks in industries

displaying large inflation rates, whose direct effect is already soaked up by the industry-

time fixed effect. This is indeed the correct intuition for the full information benchmark,

in which large industry shocks lead to high industry inflation, but that effect only gen-

erates an increase in the common industry trend and no effect on the elasticity of firms’

relative prices. Under incomplete information, firms cannot forecast the exact persistence

of the shocks; as they observe an increase in their costs and an associated large increase in

industry inflation, they conclude that the shock is nominal and thus persistent. In turn,

a high perceived persistence leads to a large price response to the shock. Accordingly,

when selecting subsamples with large industry shocks, i.e. sampling more from the dis-

tribution of price changers, one would detect in the data a statistically larger elasticity of

relative prices to idiosyncratic cost shocks compared to “normal times,” consistently with

the reduced-from evidence.

In the next section, we model a mechanism via information frictions that leads to

such state-dependent behavior of the pass-through.

25We refrain from making quantitative statements on the overall pass-through for concerns regarding down-
ward bias due to measurement error, which is not addressed by ordinary least squares. We report in Figure A.1
of Appendix B the scatterplots of price changes against cost changes for different horizons, which also indicate
a bias due to —possibly mismeasured— outliers. Nevertheless, the qualitative patterns are informative as a first
step. In section 5.3, we address measurement error among other concerns via a structural estimation approach.
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5.2 State Dependence via Information Frictions

The mechanism is modeled as follows. A large persistent industry cost shock has two

effects. First, a direct effect that increases the dispersion in prices and dispersion in price

growth rates —keeping fixed the Kalman gain— because firms are subject to a nominal

rigidity. Intuitively, when the shock hits, some firms adjust prices whereas others do not

adjust, leading to an increase in the dispersion. This is a standard channel in any model

with nominal frictions. Second, there is an indirect effect that amplifies the price response

under incomplete information. The increase in dispersion through the first channel leads

to an increase in the Kalman gain, i.e. an increase in the speed at which beliefs are updated.

The latter channel generates an extra boost in inflation, further price dispersion via the

direct channel, and therefore additional rounds of adjustments. At the end of this process,

inflation, dispersion, and the pass-through are all higher compared to the case in which

the Kalman gain is fixed at the pre-shock level.

Let us now break down the mechanism into steps and provide evidence.

Fact (1): Large shocks increase price dispersion. First, as we show in Appendix A.2, we

can decompose the variance of price changes under Calvo adjustments in the following

direct and indirect effects:

V (∆pf it) =
θ

1−θ
π2
it︸    ︷︷    ︸

Direct Effect

+ (1−θ)V (∆pof it)︸              ︷︷              ︸
Indirect Effect

through change in βit

(20)

The first term is the direct effect, which is present simply because of the nominal rigidity.

The second term captures the indirect effect, which depends on the variance of conditional

price changes. In particular, the latter depends on industry inflation (in absolute value)

only through the change in βit . Hence, the indirect effect is absent if the Kalman gain is

fixed. Therefore industry inflation should be positively correlated with the dispersion of

price changes via both channels provided that βit is increasing in |πit |.
To corroborate this argument with data, we compute the industry dispersion of price

changes and the industry inflation rate in every month and industry. We then demean vari-

ables with a sector-by-time fixed effect (defined at the 2-digit NACE level), which serves

the purpose of isolating industry variation by removing aggregate trends from the vari-

ables. Figure 2 is the scatterplot of these detrended variables. As we can see, whenever

industry inflation is large (in absolute terms), industry dispersion is large. This confirms

that the dispersion in price changes is indeed positively correlated with the absolute value

of industry inflation.26

26Similar patterns of inflation and dispersion are documented for retail prices by Sara-Zaror (2022).
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Figure 2: Evidence that large shocks increase price dispersion
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Notes. Scatterplot of monthly industry inflation against the monthly industry dispersion of price changes. The
scatterplot removes a sector-by-time fixed effect (2-digit NACE). Observations are weighted using the Törnqvist
weights. The regression line (red dashed line) is obtained by regressing the dispersion on the square of inflation.

Fact (2): Belief dispersion predicts price dispersion. We now want to establish that

the Kalman gain βit is increasing in the variance of price changes V (∆pf it+1). This will

conclude the argument as it implies that both the direct and indirect channels of equation

(20) operate in the same direction, leading to a feedback loop that generates a high pass-

through whenever inflation is high and persistent.

Though we cannot directly observe the Kalman gain, as we show in Appendix A.2,

βit is a monotone increasing function of the industry dispersion in posterior beliefs:

V (Ef it(∆pf it+1)) = βit · σ2
e,it (21)

As βit is an increasing function of the prior variance σ2
e,it (equation 12), and the dispersion

in posterior beliefs is high whenever the prior variance is high (equation 21), we can then

use the observed dispersion in expectations as a proxy for the unobserved Kalman gain to

asses qualitative patterns driven by fluctuations of the prior variance.

We measure the industry dispersion of beliefs with the industry dispersion of our

survey measure of expected price changes and correlate it against the dispersion in price

changes occurring in the year after the belief is reported. We consider these longer changes

because, as we argued, the duration of a price spell is roughly a year. As before, we detrend

variables with a sector-by-time fixed effect and report the scatterplot of the data.
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Figure 3: Evidence that belief dispersion predicts price dispersion.
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Notes. Scatterplot of the industry dispersion in beliefs against the industry dispersion in annual price changes.
The dispersion in beliefs is constructed as the industry dispersion of the survey expectation of the sign of a price
change. The scatterplot removes a sector-by-time fixed effect (2-digit NACE). Observations are weighted using
the Törnqvist weights. The regression line (red dashed line) is obtained by regressing the dispersion of price
changes on the dispersion in beliefs.

As Figure 3 shows, a high industry dispersion in beliefs predicts a high dispersion

in price changes over the subsequent year. This provides evidence for a mechanism in

which the prior variance σ2
e,it := V it(∆pf it+1|t) contains information on the (ex-post) re-

alized dispersion V (∆pf it+1), and therefore, in response to a persistent aggregate shock

which increases the dispersion (fact 1), firms’ uncertainty regarding the evolution of the

industry distribution increases (high σ2
e,it) leading to a larger Kalman gain (high βit) and

a higher sensitivity to shocks. The higher pass-through then leads to a further increase of

the price dispersion, which in turn increases even more the Kalman gain and so on. Also,

we notice that this mechanism can rationalize the reduced-form evidence discussed in the

previous section. Finally, the mechanism described here is consistent with the evidence

from the natural experiment studied in Drenik and Perez (2020).

Fact (3): Belief dispersion is high when inflation volatility is high. Putting together the

two previous facts, we expect to find a positive correlation between aggregate dispersion

in beliefs and the aggregate inflation rate (in absolute value). To show this, we compute

a centered annual moving average of the dispersion in the survey measure of beliefs to

capture business-cycle fluctuations of the variable. We then compute aggregate annual
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Figure 4: Evidence that belief dispersion is positively correlated with inflation volatility.
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Notes. Time series of annual aggregate inflation and aggregate standard deviation of beliefs. All variables are
aggregated using the Törnqvist weights. Inflation is detrended by removing from the aggregate price level a
piece-wise linear trend with one break. The standard deviation is smoothed using a centered 12-month moving
average.

inflation and remove the linear trend of the price level to be able to interpret the inflation

rate as log-deviations from trend inflation consistently with the model.

Figure 4 reports the two time series for inflation and the standard deviation of be-

liefs. As the plot shows, in periods in which inflation has been above trend, the dispersion

in beliefs has also been high. In particular, the dispersion in beliefs has been high at the

beginning of the sample (1999-2001), in the period 2005-2008, and during the inflation

surge in 2021-2023. The dispersion instead decreased in periods of moderate inflation

such as the 2002-2004 period, the years that followed the 2009-2010 recession, and the

period of moderation that occurred between 2014 and 2017. Finally, in the two episodes

in our sample of deflation corresponding to the sovereign debt crisis in 2012-2014 and the

pandemic in 2019-2020, the dispersion rose.

This aggregate correlation is not new to the literature. In fact, Mankiw et al. (2003)

documented similar patterns using data for the US, from which the authors also concluded

that a model with information frictions is able to rationalize the evidence. Overall, these

three correlations suggest a possible quantitative role for movements in higher-order mo-

ments of the price and belief distributions in explaining inflation, i.e. the first moment. We

provide a more formal identification of this quantitative role via the Dynamic Pass-through

Regression in the next section.
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5.3 Identification via the Dynamic Pass-through Regression

Now that we established the correlations underlying a possible mechanism of state-dependent

pass-through via information frictions, let us address the identification more formally via

the Dynamic Pass-through Regression. We extend the analysis from section 4 to include

in regression (16) an interaction term between the Kalman gain and the squared industry

inflation rate, as follows:

∆pf it =FEf +FEit +
(1−θ)2

θ

(
(1−Ω)mcnf it − pf it

)
+ β · I(π2

it ≥ 90%) ·∆pf it+1

+ β · I(π2
it < 90%) ·∆pf it+1 + εf it ,

(22)

where I denotes an indicator function for the industry inflation regime.

As before, we are regressing price changes on a firm and industry-by-time fixed ef-

fect, marginal cost, the relative price level, and future price changes. Differently from

before, we allow for two separate Kalman gain coefficients depending on the industry in-

flation regime, effectively splitting the estimation sample for this parameter into two de-

pending on whether industry inflation is large (top 10% of all the inflation realizations)

or low (remaining 90%). As firms observe the price level (section 2.1), adding this inter-

action term does not change the requirements for parameter identification (proposition

2). Therefore we proceed by using the baseline instrument set and perform robustness

including demand expectations as an additional instrument.27

Columns A and B of Table 5 report the results. The estimates of θ and Ω are in line

with the baseline analysis, suggesting that accounting for the state dependence of the pass-

through does not significantly affect the estimates of these parameters. On the other hand,

we estimate different Kalman gains for the two inflation regimes, with βit = 0.984 (0.079)

in the high inflation regime and βit = 0.690 (0.067) in the low inflation regime when using

the baseline instrument set, and βit = 0.950 (0.080) in the high inflation regime and βit =

0.270 (0.228) in the low inflation regime when including also the demand instrument.

Though the split of the sample leads to larger robust standard errors, we can nevertheless

reject a null hypothesis of constant coefficients at a 10% confidence level. Interestingly, our

estimates imply that the Kalman gain in the high-inflation regime becomes close to one,

that is firms behave as if they had approximately complete information whenever inflation

is high. This result is in line with experimental evidence from Weber et al. (2023), which

argues that firms privately acquire information in high-inflation regimes and therefore

respond less to exogenously provided information regarding inflation.

To address potential confounding mechanisms via the state-dependent frequency of

27Results are also robust to including demand expectations as a control.
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Table 5: Estimation of the Regression including the Interaction

(A) (B) (C) (D)

θ 0.821 0.789
(0.011) (0.017)

Ω 0.621 0.650 0.569 0.600
(0.024) (0.030) (0.013) (0.019)

β · I(π2
it ≥ 90%) 0.984 0.950 0.645 0.516

(0.079) (0.080) (0.021) (0.061)

β · I(π2
it < 90%) 0.690 0.279 0.477 0.317

(0.067) (0.228) (0.021) (0.022)

Demand instrument n y n y
Time-varying θt n n y y

Hansen’s J overidentification test

χ2-stat 5.817 5.438 6.062 6.084
P-value 0.324 0.364 0.416 0.413

Test of constant coefficients β · I(π2
it ≥ 90%) = β · I(π2

it < 90%)

Z-stat 2.16 3.15 1.77 1.86
P-value 0.031 0.002 0.077 0.063

Notes. This table provides GMM estimates for the baseline regression (22) at monthly frequency:

∆pf it = FEf +FEit +
(1−θ)2

θ

(
(1−Ω)mcnf it − pf it

)
+ β · I(π2

it ≥ 90%) ·∆pf it+1 + β · I(π2
it < 90%) ·∆pf it+1 + εf it .

Column A’s orthogonality condition is implemented by using the baseline instrument set. Column B augments
the instrument set with expectations of future demand growth. Columns C and D include a time-varying mea-
sure of the aggregate frequency of price changes. Regressions are weighted using Törnqvist weights. GMM is
implemented using a two-step estimator with a weighting matrix and standard error clustering at the sector
level.
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price changes in menu cost models (Cavallo et al. 2023, Blanco et al. 2022, Gagliardone

et al. 2024), we perform an additional robustness exercise in which we use data on the

aggregate realized frequency of price changes. To avoid measurement error due to our

measure of prices as unit values (footnote 21), we use sign(∆pf it) from the NBB-BS. We

then compute the fraction of firms that report having changed prices and use this measure

in place of the coefficient θ, effectively allowing for an additional control in the regression

in the form of a time-varying θt . We report a moving average of this time series in Figure

A.2 of Appendix B.

Columns C and D of Table 5 report the results. First, the estimate of Ω is consis-

tent with our previous results, further consolidating confidence with respect to the iden-

tification of this parameter. Second, the estimates of the two interaction terms are both

lower than the estimates from columns A and B and become closer to each other, sug-

gesting that there is indeed a rich interaction between nominal and information rigidities.

In particular, we obtain estimates of βit = 0.645 (0.021) in the high inflation regime and

βit = 0.477 (0.021) in the low inflation regime when using the baseline instrument set, and

βit = 0.516 (0.061) in the high inflation regime and βit = 0.317 (0.022) in the low inflation

regime when including also the demand instrument. Notably, the standard errors for the

two coefficients become tighter than in the previous estimation, indicating that adding the

control for the time-varying frequency strengthens the inference. Nevertheless, we can

still reject the null hypothesis of constant coefficients at a 10% confidence level.

To sum up, from the quantitative exercise of this section, we conclude that state-

dependent information frictions can be detected in the data and the evidence survives

even when accounting for the fluctuations in the frequency of price changes. In high-

inflation periods, firms behave as if they were more “forward-looking,” responding more

to idiosyncratic cost shocks. We now draw the aggregate implications of these findings.

6 Aggregate Implications

This section draws the aggregate implications of our findings of state-dependent infor-

mation frictions. First, we derive the New Keynesian Phillips curve for the setting. We

then illustrate how incomplete information leads to high discounting, nonlinear cost-price

pass-through, and a correlation between higher-order moments of the price distribution

and aggregate inflation. Finally, we show that our model can account for a larger share of

inflation volatility compared to the full-information benchmark.
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6.1 Nonlinear Phillips Curve under Information Frictions

Let us now derive the New Keynesian Phillips curve for the framework. As standard,

the NKPC is obtained by aggregating the first-order conditions of the firms (equation 8)

and applying the law of large numbers. The next propositions and corollaries clarify how

the presence of information frictions leads to a nonlinear amplification of the response of

inflation to changes in aggregate real marginal cost. Denote by πt :=
∫

[0,1]

∫
Fi
∆pf itdf di

the aggregate inflation rate, mcrt :=
∫

[0,1]

∫
Fi
mcrf itdf di the average real marginal cost, and

by βt :=
∫

[0,1]βitdi the average Kalman gain. We assume, consistently with the empirical

evidence (Lenzu et al. 2023), that short-term average returns to scale are constant.

Proposition 3 (NKPC). The New Keynesian Phillips curve under information frictions approx-

imately satisfies:

πt = λ(µ+mcrt ) +Et(πt+1) + Cov(βit ,πit+1) + ϵt+1 (23)

where µ is the steady-state markup, the slope of the Phillips curve is:

λ :=
(1−θ)2

θ
(1−Ω)

The aggregate “cost-push shock:”

ϵt+1 := βt(πt+1 −Et(πt+1)),

is a conditionally mean-zero Gaussian expectational error. Cov denotes the cross-sectional co-

variance across industries.

The NKPC in equation (23) is a direct generalization of the Phillips curve obtained

in standard models with Calvo frictions and follows immediately from aggregating the

Dynamic Pass-through Regression. Inflation is an increasing function of the aggregate

real marginal cost, in deviation from its steady state value. Under the assumption of

constant aggregate returns to scale, the slope of the cost-based NKPC corresponds to the

pass-through of contemporaneous cost shocks as estimated in section 4.28 Due to the pres-

ence of nominal rigidities, inflation responds to expectations of future inflation with an —

approximately— unitary coefficient. In the full-information benchmark (βt→ 1,Cov→ 0),

the expectation of future inflation is discounted at an exponential rate of δ ≈ 1. For expec-

tations to decay so rapidly, observation of the price level must reveal all the uncertainty

relevant to the forecasting problem. Shocks are then unforecastable, i.e. orthogonal to the

28As discussed in Gagliardone et al. (2023), accounting for an empirically reasonable departure from constant
aggregate returns reduces the estimates of the slope by about 6% at quarterly frequency, which is less than half a
percentage point.
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information set of the firm.29 A useful analogy is to think about the exponential discount-

ing of expectations as information becoming rapidly obsolete, leading to low persistence

of expectations over time.

However, we documented evidence that the pass-through from expectations to prices

has a steep drop at short horizons, consistently with a hyperbolic form of discounting (sec-

tion 5.1). As the hyperbolic decay is slower than exponential, information persists over

time leading to slow fluctuations of expectations. In the data, we indeed detect correla-

tions over time between prices and beliefs, as well as persistence of expectations. Through

the lenses of the model, the covariance in equation (23) incorporates these comovements

between realizations of shocks and information of firms as mediated by the Kalman gain,

which parametrizes the hyperbolic decay.

If the Kalman gain is state-dependent, large shocks increase βit . This generates in-

flation volatility because industries with large shocks are also mostly reactive. Indeed,

when averaging across industries, the covariance term has the same sign of the mean of

the shocks, i.e. the same sign of inflation, contributing positively to inflation volatility.

Let us now formalize these insights.

High discounting. We discussed in section 2.5 how the presence of information frictions

implies a form of discounting of cost shocks at the firm level. In turn, when aggregating

across firms, the high micro-discounting of shocks leads to a high macro-discounting of

expectations. The next corollary formalizes the connection between information frictions

and discounting at the aggregate level.

Corollary 1. Suppose that the covariance varies over time. Then βt is bounded away from one.

The proof of the corollary in Appendix A.3 shows that the discounting can be tightly

bounded above by the nonlinear effect of an unanticipated nominal cost shock ct+1 < I t :

βt ≤ 1−
∂Cov(βit ,πit+1)

∂ct+1
< 1.

We argued in the previous section that βt is high when shocks are large, i.e. the covariance

increases in response to shocks. As the pass-through of any nominal shock is at most com-

plete, movements in the covariance lead to a loose upper bound. Tightness of the bound

follows from showing that the covariance is either constant at zero or strictly positive (ex-

cept with a zero shock). This leads to the result that, as the covariance varies over time, the

29For the cost-push shock to become orthogonal to the information set under complete information, the prior
belief must converge to a improper uniform distribution. Expectations of the error term are nevertheless well-
defined because βt and πt+1 −Et(πt+1) become uncorrelated, leading to a zero average.
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discount rate must be strictly smaller than one. Hence, under the information friction, the

pass-through of future costs has a slower decay than exponential.30

To conclude, the effect on contemporaneous inflation of a nominal unanticipated

shock that raises inflation tomorrow by one percentage point —to a first order— is equal to

βt%, which is generally smaller than one percent. Hence, the response of inflation to such

news is discounted. Similarly, the effect of an anticipated shock is given by (1−βt)%, which

is also strictly smaller than one percent. Therefore both types of shocks do not lead to large

deviations of inflation from trend to the extent that nonlinear effects are also small.

Nonlinear pass-through. We now impose additional structure on beliefs to deliver a

closed-form characterization of the nonlinear term that provides intuition and can then

be tested with data in the next section. The practical purpose of the assumption is to link

beliefs, i.e. the prior variance σ2
e,it := V it(∆pf it+1|t), to the realized dispersion V (∆pf it+1) in

a time-invariant manner. Formally, we require that the elasticity of the prior variance with

respect to the realized dispersion conditionally on a nominal shock is constant over time

and bounded, as follows:

ζ ≡ ζit :=
∂σ2

e,it

∂V (∆pf it+1)
∈ [0,1].

This assumption can be interpreted as firms forming beliefs in a stationary environment,

with ζ parametrizing the extent to which they anticipate future shocks and incorporate

that knowledge into beliefs. In particular, if ζ = 0, beliefs are uncorrelated with ex-post

realizations. We will show shortly that this “lower bound” must bind with full information,

implying that the covariance in equation (23) is zero. On the other hand, if ζ > 0, beliefs

predict realizations, that is the Kalman gain increases in anticipation of shocks. In turn,

firms’ response increases with the size of shocks, due to the pass-through into beliefs via

the instantaneous change in βit . If ζ = 1, beliefs perfectly comove with realizations, that is

the Kalman gain increases one-to-one in anticipation of shocks. In turn, firms are mostly

responsive leading to an “upper bound” for inflation volatility. In the quantitative analysis

of the next section, we provide a comparison of the two benchmarks (ζ ∈ {0,1}).
The next proposition characterizes the resulting covariance in terms of observable

moments of the distribution of price changes.

Proposition 4 (Nonlinearities of the NKPC). Denote by σ2
t ,γt <∞ the variance and skewness

of the cross-sectional distribution F of industry inflation rates:

πit+1 ∼ F(πt+1,σ
2
t ,γt).

30Such a feature of “high discounting” in macroeconomic models has been discussed to be desirable (Gabaix
2020) to resolve several puzzles in the literature, including the forward-guidance puzzle.
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Up to a second-order approximation of the Kalman gain around the symmetric steady

state, the covariance simplifies to:

Cov(βit ,πit+1) = ζ
θ

1−θ
σ2
t

σ2
η

(
πt+1 +

1
2
γtσt

)
. (24)

where σ2
t /σ

2
η measures the aggregate signal-to-noise ratio.

Proposition 4 provides a characterization of the nonlinear terms of the NKPC in

equation (23). When the elasticity ζ is zero, the covariance term is zero. In particular,

this must be the case provided that inflation has finite moments in the full-information

benchmark, which is characterized by a constant Kalman gain (βit → 1) and improper

prior (σ2
e,it → ∞). With a positive elasticity, the variance of price changes comoves with

inflation (equation 20) at rate θ/(1−θ). Hence, the nonlinear effects can be detected in the

data only at a high frequency (θ > 0). The aggregate “signal-to-noise ratio” also shows up

in the covariance as a multiplicative term, scaling endogenously up or down the response

of the covariance to shocks that affect inflation (πt+1) and the skewness (γt).

The next corollary clarifies how the covariance leads to a nonlinear pass-through

even when shocks affect only the first moment of the distribution.

Corollary 2. Suppose that γt = 0. The pass-through of an unanticipated nominal cost shock

ct+1 < I t is nonlinear and given by:

∂πt
∂ct+1

=

βt + ζ
θ

1−θ
σ2
t

σ2
η

 · ∂πt+1

∂ct+1
.

In a neighborhood of the symmetric steady state, σ2
t is small, hence the first-order

effect (βt) dominates over the higher-order effect (σ2
t /σ

2
η ). Away from the steady state, the

nonlinear term leads to amplification of the effect of shocks.

Effects of heterogeneity. Finally, we focus now on the role that the skewness of the distri-

bution of price changes plays in equation (24). The skewness is positive when the distribu-

tion of industry inflation rates displays a long right tail, i.e. few industries have large posi-

tive shocks. On the other hand, when a large share of industries experiences high inflation,

the skewness is negative. If shocks are independently distributed across industries and

follow the same distribution, aggregate inflation is symmetrically distributed and there is

no skewness. Away from this benchmark, asymmetric industry shocks induce correlations

between the first and third moments of the distribution of price changes.

In Figure 5 we report the time series for annual inflation and the skewness of beliefs,

which we constructed from the survey measure of expected price changes (Ef it−1(sign(∆pf it)))
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Figure 5: Evidence for the role of higher-order moments of the belief distribution.
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Notes. Time series of annual aggregate inflation and aggregate skewness of beliefs. All variables are aggregated
using the Törnqvist weights. Inflation is detrended by removing from the aggregate price level a piece-wise
linear trend with one break. The skewness is smoothed using a centered 12-month moving average.

and smoothed similarly to Figure 4. As the plot suggests, firms anticipate few extreme re-

alizations of industry inflation when inflation is stable, leading to a positive skewness.

In particular, this is the case for the periods 1999-2008, 2010-2011, and 2016-2018 in

which the economy was arguably in normal times. The skewness decreases mildly dur-

ing the 2009-2010 recession relative to the previous period and became negative during

the sovereign debt crisis (2012-2014) and the inflation surge in 2021-2023, which can be

arguably considered moments of high price instability. Through the lenses of the model,

the decline in the skewness in high inflation regimes operates as a stabilizing force for

inflation, preventing it from drifting further away from trend.

6.2 How much Inflation Volatility can the Model Explain?

Combining propositions (3) and (4), we now derive testable implications for the model at

the aggregate level. With symmetric shocks (γt = 0), the New Keynesian Phillips curve

with state-dependent information frictions simplifies to:

πt = λ(µ+mcrt ) +Et(πt+1) + ζ
θ

1−θ
σ2
t

σ2
η
πt+1 + ϵt+1.

Taking expectations of both sides with respect to the average prior belief I t and treating

σ2
t /σ

2
η as predetermined (or a time-varying parameter), we obtain a difference equation for

the inflation rate predicted by the model (πet ) as a function of the aggregate real marginal
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cost:31

πet = λ(µ+mcrt ) +

1 + ζ
θ

1−θ
σ2
t

σ2
η

Et(πet+1), (25)

where the Kalman gain βt does not show up directly because ϵt+1 is mean zero condi-

tionally on I t . Nevertheless, the presence of the information friction amplifies the pass-

through of shocks via the nonlinear term ζ θ
1−θσ

2
t /σ

2
η .

The solution of this difference equation leads to a relation between current inflation

and the real marginal cost with a time-varying coefficient. In turn, this relation pins down

the share of volatility that the model can generate for any given path of real marginal cost.

The next proposition derives the solution of equation (25) obtained using the method of

undetermined coefficients.

Proposition 5 (Inflation Dynamics). Assume that the distribution of inflation rates is symmet-

ric (γt = 0). The expected dynamics of aggregate inflation (πet ) as a function of the innovation

to the aggregate nominal marginal cost (εn,t) is given by:

πet (εn,t) = Ψt · (mcrt−1 + εn,t), (26)

where Ψt ≡ Ψ (ε2
n,t) is an increasing function of the size of the shock.

Equation (26) is a “reduced-form NKPC,” with a time-varying coefficient that re-

flects the state dependence of the pass-through. In particular, Ψt is strictly increasing

in ε2
n,t only if ζ > 0 is strictly positive. This means that the reduced-form pass-through

displays state dependence only if beliefs —to some extent— predict realizations. In par-

ticular, when ζ = 1, Ψt provides an upper bound for the response of prices to cost shocks.

The lower bound is obtained by setting ζ = 0, i.e. by imposing that the covariance in the

NKPC is zero (equation 23).

Proposition 5 characterizes how much inflation volatility can be generated by the

model, depending on the calibration of parameters and assumptions on beliefs. To test the

performance of the model at business-cycle frequency, we use equation (26) and construct

the year-over-year aggregate inflation that the model predicts as a function of the realized

path of aggregate marginal cost during the year. Following Gagliardone et al. (2023) and

Gagliardone et al. (2024), we measure the latter as the Törnqvist-weighted average of firm-

level marginal costs, which mirrors the construction of the aggregate price index from

firm-level prices. Finally, we detrend both the price level (as before) and the aggregate

nominal marginal cost removing a linear trend. Parameters are calibrated at our baseline

31It is indeed possible to treat σ2
t /σ

2
η as a predetermined variable because it shows up only via the prior vari-

ance (σ2
e,it), which is predetermined, and the elasticity ζ, which is non-stochastic by our assumption on beliefs.
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Figure 6: Inflation (year-over-year) in data and model

-0.40

-0.20

0.00

0.20

0.40

A
nn

ua
l I

nf
la

tio
n

00 05 10 15 20 25

Data
Incomplete Information
Full Information

Notes. Time series of annual aggregate inflation and model-based inflation. All variables are aggregated using
Törnqvist weights. Inflation is detrended by removing from the aggregate price level a piece-wise linear trend
with one break. The red full line is the model-based equation for the nonlinear model with incomplete informa-
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linear model with complete information, obtained from equation (26) for the case ζ = 0.

estimates (Column A of Table 4).32

Figure 6 reports the results of this exercise. The black line is year-over-year inflation

in the data. We then feed the aggregate path of marginal cost and the dispersion of indus-

try inflation rates into the model via equation (26). We obtain the model-based inflation,

which is plotted in red. As the figure shows, the model tracks remarkably well the time

series of inflation considering that we are only feeding aggregate information on costs and

dispersion across industries. In detail, regressing data on model (black on red), we obtain

an R2 = 0.63. In turn, the nonlinear model can account for about two-thirds of the overall

volatility of inflation. This number provides an upper bound for the share of the volatility

of inflation that can be explained via our model of state-dependent information frictions.

To illustrate the role of nonlinearities, we compute the lower bound which corre-

sponds to the full-information benchmark. In this case, the response of inflation to shocks

is linear in the cost shocks. This lower bound is plotted as the green dashed line. We notice

that the model is still correlated with data, due to the path of marginal cost being corre-

32The variance of the noise (σ2
η ) is calibrated to match the estimate of the Kalman gain (β) at the average value

of the dispersion of industry inflation rates (σ2
t ).
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lated with inflation. However, the full-information benchmark displays less volatility than

the incomplete-information model, and therefore less volatility than the data. Regress-

ing the black line on the green, we find an R2 = 0.5, showing that indeed the model with

state-dependent information frictions can rationalize a larger share of inflation volatility.

7 Conclusions

In this paper, we discussed theory and evidence on the dynamic pricing behavior of firms.

We argued that the data calls for a model that includes real, nominal, and information fric-

tions in order to match the intertemporal co-movements of prices, costs, and expectations.

We provided three novel insights. First, firms apply a high discounting to cost

shocks at the micro-level. When aggregating across firms, the high discounting leads to a

decay of inflation expectations which is slower than exponential. New information is only

slowly incorporated into beliefs and hence expectations persist over time. In turn, unan-

ticipated cost shocks have a smaller impact on inflation compared to a full-information

benchmark.

Second, the speed at which beliefs are updated, i.e. the Kalman gain, is state-

dependent. This coefficient increases in response to nominal cost shocks and increases

more with large shocks. In turn, in industries that are hit by large nominal disturbances,

firms behave as if they had approximately complete information, updating their beliefs

rapidly in response to news. The quicker revision of expectations leads to a stronger con-

temporaneous reaction to shocks, which scales up with the magnitude of the disturbance.

Therefore, the cost-price pass-through is nonlinear and increases with the size of shocks.

Third, high discounting and nonlinearities imply a correlation between the first and

higher-order moments of the price distribution. In particular, the response of inflation to

shocks increases with the dispersion of inflation rates across industries. Hence heterogene-

ity matters because it affects the elasticity of inflation to nominal disturbances.

We conclude from the analysis that the state dependence of the information friction

serves as an amplifying mechanism of the propagation of cost shocks. Specifically, the re-

sulting inflation volatility is greater than in an alternative model where information is com-

plete or the Kalman gain remains fixed. As a result, our model of state-dependent infor-

mation frictions demonstrates more monetary neutrality compared to the full-information

benchmark. This reveals a channel that operates in the opposite direction of what is typi-

cally understood to be the aggregate effect of incomplete information.
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Dynamic Pricing under Information Frictions:
Evidence from Firm-level Subjective Expectations

L. Gagliardone J. Tielens

Appendix

A Derivations

A.1 Derivation of markup function

Dynamic oligopoly with nested CES preferences

Assume that there is a continuum of industries (indexed by i) and a finite number of firms

N within each industry. Each firm is indexed by f (or j). Within each industry, firms

compete à la Bertrand. In this environment, the price indexes for each industry Pit and the

aggregate price index Pt are defined, respectively, as:

Pit :=

 1
N

N∑
f =1

P
1−γ
f it


1

1−γ

; Pt :=
(∫

i∈I
P 1−σ
it di

) 1
1−σ

,

Log-linearization of the price indexes leads to the approximate Cobb-Douglas price index

as in the text. The demand function for firm f ∈ Fi takes a nested CES form, with the

elasticity of substitution across industries σ > 1 and the elasticity of substitution within

industries γ > σ :

Df it =

P of itPit

−γ (
Pit
Pt

)−σ
Yt . (A.1)

Firms internalize the dynamic effect of their choices on the industry price index and

on industry demand. Therefore, the residual elasticity of demand faced by firm f takes the

following form:

ϵf it := −
∂ lnDf it
∂ lnP of it

= γ − (γ − σ )
∂pit
∂pof it

. (A.2)

We can further characterize the derivative above. First, the price index of competitors of

firm f is defined as:

P
−f
it :=

 1
N − 1

N−1∑
j,f

P
1−γ
jit


1

1−γ

.
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It follows that P 1−γ
it = N−1

N

(
P
−f
it

)1−γ
+ 1
N

(
P of it

)1−γ
. Next, we can express the derivative of the

price index in period t with respect to the firms’ reset price in period t as follows:

∂Pit
∂P of it

= P γit

(N − 1
N

)
(P −fit )−γ

∂P
−f
it

∂P of it
+
( 1
N

)
(P of it)

−γ

 .
Multiplying both sides by

P of it
Pit

, and defining the competitors’ reaction function ζf it :=
∂p
−f
it

∂pof it
,

we obtain:

∂pit
∂pof it

= ζf it
(N − 1
N

)P −fitPit


1−γ

+
1
N

P of itPit

1−γ

= ζf it(1− sf it) + sf it ,

where sf it := 1
N

P of itDf it
PitYit

= 1
N

(
P of it
Pit

)1−γ
denotes the within-industry revenue share of firm

f , and Yit :=
(
Pit
Pt

)−σ
Yt is the industry demand. Replacing the expression for ∂pit

∂pof it
into

equation (A.2), we find that the within-industry elasticity of demand faced by firm f is

given by:

ϵf it = γ − (γ − σ )
[
ζf it(1− sf it) + sf it

]
. (A.3)

The intuition behind this expression is straightforward. The stronger the reaction of com-

petitors to a firm’s price change—-captured by ζf it—-the lower the residual elasticity of

demand. A low residual elasticity of demand, in turn, implies that the firm can sustain a

higher markup in equilibrium. This result mirrors the one in the dynamic oligopoly envi-

ronment in Wang and Werning (2022) and it nests a number of static environments featur-

ing imperfectly competitive firms. In Atkeson and Burstein (2008) static Nash oligopoly,

ϵf it = 0 and ζf it = 0. Under monopolistic competition, N → ∞, which implies ζf it → 0

and sf it→ 0.

We now use this result to derive the expression for the log-linearized desired markup

in equation (2) in the paper. We log-linearize around a symmetric Nash steady state. Log-

linearizing the elasticity in (A.3) around the steady state, we obtain the steady state resid-

ual demand elasticity:

ϵ = γ − (γ − σ )
1
N
,

which corresponds to the expression in Atkeson and Burstein (2008). In this model, the

desired markup is given by the Lerner index µf it := ln(ϵf it/(ϵf it − 1)). Log-linearizing this

expression and substituting the expression for steady-state residual demand elasticity, we

obtain the expression for the log-linearized desired markup (in deviation from steady state)
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in equation (2.1):

µf it −µ = −Γ
(
pof it − p

−f
it

)
+u

µ
f it ,

where Γ := (γ−σ )(γ−1)
ϵ(ϵ−1)

N−1
N > 0 denotes the markup elasticity with respect to prices, and:

u
µ
f it :=

γ − σ
ϵ(ϵ − 1)

N − 1
N

ζf it , (A.4)

captures residual variation in the markup that depends on the changes in the slope of

competitors’ reaction function. Finally, for sufficiently small deviations from steady state,

ζf it ≈ 0 implies the result. See Gagliardone et al. (2023) for a discussion of the role of

ζf it+τ when τ > 0 in the identification arguments.

Monopolistic competition with Kimball preferences

Assume that the industry output Yit is produced by a unitary measure of perfectly com-

petitive firms using a bundle of differentiated intermediate inputs Yf it , f ∈ i. The bundle

of inputs is assembled into final goods using the Kimball aggregator:∫ 1

0
Υ

(
Yf it
Yit

)
df = 1,

where Υ (·) is strictly increasing, strictly concave, and satisfies Υ (1) = 1.

Taking as given the industry demand Yit , each firm minimizes costs subject to the

aggregate constraint:

min
Yf it

∫ 1

0
Pf itYf itdf s.t.

∫ 1

0
Υ

(
Yf it
Yit

)
df = 1.

Denoting by ψ the Lagrange multiplier of the constraint, the first-order condition of the

problem is:

Pf it = ψΥ ′
(
Yf it
Yit

)
1
Yit

(A.5)

Define implicitly the industry price index Pit as:∫ 1

0
β

(
Υ ′(1)

Pf it
Pit

)
df = 1

where β := Υ ◦ (Υ ′)−1. Evaluating the first-order condition (A.5) at symmetric prices, Pf it =
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Pit , we get ψ = PitYit
Υ ′(1) . Replacing for ψ, we recover the demand function:

Pf it
Pit

=
1

Υ ′(1)
Υ ′

(
Yf it
Yit

)
. (A.6)

Therefore, the demand function faced by firms when resetting prices is:

Df it =

(Υ ′)−1

Υ ′(1)
P of it
Pit

(PitPt
)−σ

Yt

Taking logs of equation (A.1) and differentiating, we obtain the following expression for

the residual elasticity of demand:

ϵf it := −
∂ lnDf it
∂ lnP of it

= −
Υ ′

(
Yf it
Yit

)
Υ ′′

(
Yf it
Yit

)
·
(
Yf it
Yit

) (A.7)

We now use this result to derive the expression for the log-linearized desired markup

in equation (2.1) in the paper, under monopolistic competition with Kimball preferences.

As before, we focus on small departures from the symmetric steady state. Denote the

steady-state residual demand elasticity by ϵ = − Υ ′(1)
Υ ′′(1) . Then the derivative of the residual

demand elasticity ϵf it in (A.7) with respect to
Yf it
Yit

, evaluated at the steady state, is given

by:

ϵ′ =
Υ ′(1) (Υ ′′′(1) +Υ ′′(1))− (Υ ′′(1))2

(Υ ′′(1))2 ≤ 0. (A.8)

The equation above holds with equality if the elasticity is constant (e.g., under CES pref-

erences). Also in this model, the desired markup is given by the Lerner index. Log-

linearizing the Lerner index around the steady state and using equation (A.8), we have

that, up to a first-order approximation, the log-markup (in deviation from the steady state)

is equal to:

µf it −µ =
ϵ′

ϵ(ϵ − 1)

(
yf it − yit

)
Finally, log-linearizing the demand function (A.1) and using it to replace the log difference

in output, we obtain:

µf it −µ = −Γ
(
pof it − pit

)
where, in the case of Kimball preferences, the sensitivity of the markup to the relative price

is given by Γ := ϵ′

ϵ(ϵ−1)
1

Υ ′′(1) . Notice that, because there there is a continuum of firms within

an industry, we have that pit = p−fit without loss of generality.
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A.2 Derivations for Section 5

Derivation of equation (20). Denote by ∆pof it := pof it−pf it−1. Let us first compute V (∆pf it)

and show that it is increasing in π2
it . Using the law of motion of prices, industry inflation

is given by:

πit =(1−θ)(poit − pit−1)

Using the fact that price changes are a Bernoulli random variable (second line):

V (∆pf it) =
∫
Fi

(∆pf it)
2df − (

∫
Fi
∆pf itdf )2

=θ
∫
Fi

(pf it−1 − pf it−1)2df + (1−θ)
∫
Fi

(∆pof it)
2df −π2

it

=(1−θ)
∫
Fi

(∆pof it)
2df −π2

it

=(1−θ)
(
V (∆pof it) +

( 1
1−θ

πit

)2)
−π2

it

=(1−θ)V (∆pof it) +
θ

1−θ
π2
it

Therefore keeping fixed V (∆pof it), V (∆pf it) is increasing in π2
it . We now show that also

V (∆pof it) is increasing in π2
it through the Kalman gain. Rearranging the first-order condi-

tion and making use of lemma 1:

∆p̃of it =
1−θ

1−θ(1−θ)

[
(1−Ω)m̃cf it − p̃f it−1

]
+

βitθ

1−θ(1−θ)
(∆p̃of it+1 + ηf it+1)

The above is a differential equation in ∆p̃o that can be solved backward as a function of the

histories of real component of costs m̃cf it , lagged relative prices p̃f it−1, and noise ηf it+1.

As all these variables are in deviation from the industry average hence none of them de-

pends directly on the aggregate inflation rate, ∆p̃of it+1 can only depend on πit+1 through

βit . Moreover, it is immediate to see that for any given values of {m̃cf iτ , p̃f iτ−1,ηf iτ+1}tτ=0,

the solution for ∆p̃of it+1 must be increasing in βit . It follows that an increase in βit leads

to an increase in V (∆pof it+1) and therefore V (∆pf it+1) is increasing in π2
it+1 both directly

because of the term θ
1−θπ

2
it and through the change in βit .

Derivation of equation (21). We now derive V (Ef it(∆pf it+1)) as a function of the Kalman

gain. The projection onto the signal space is given by:

Ef it(∆pf it+1|t) = ∆pf it+1|t + βitηf it+1 + (1− βit)(πeit −∆pf it+1|t). (A.9)
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The regression coefficient (Kalman gain) is:

βit =
Cov(∆pf it+1|t , sf it)

V (sf it)
=

σ2
e,it

σ2
e,it + σ2

η
.

The industry mean belief is obtained by averaging equation (A.9) and making use of the

fact that noise is mean zero in the cross-section:∫
Fi
Ef it(∆pf it+1|t)df = βitπit+1|t + (1− βit)πeit ,

where πit+1|t denotes the cross-sectional average of ∆pf it+1|t . Using equation (A.9), the

industry dispersion in beliefs can be obtained as:

V (Ef it(∆pf it+1|t)) =
∫
Fi

(
Ef it(∆pf it+1|t)−

∫
Fi
Ejit(∆pjit+1|t)dj

)2

df

=β2
it(σ

2
e,it + σ2

η )

=βitσ
2
e,it .

Finally, we notice that Ef it(∆pf it+1|t) = Ef it(∆pf it+1) when a firm is resetting the price

because innovations have a zero mean, which concludes the proof.

A.3 Proofs for the Text

Proof of Lemma 1.

Proof. Denote by ∆pof it := pof it − pf it−1 the scaled conditional price change. We notice that,

as there is no information regarding the identity of firm f in the common-knowledge infor-

mation set, the prior mean is identical for all firms within the same industry Eit(∆p
o
f it+1) =

Eit(∆p
o
it+1), where poit denotes the industry average of pof it . Averaging equation (12) in the

industry cross-section:∫
Fi
Ef it(∆p

o
f it+1)df = (1− βit)Eit(∆poit+1) + βit∆p

o
it+1,

as the noise averages out in the cross-section and the prior is common. Because price ad-

justments are a Bernoulli random variable, by the law of large numbers industry inflation

satisfies:

πit+1 =
∫
Fi
∆pf it+1df = (1−θ)∆poit+1.
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Similarly, using the law of iterated expectations and the expected law of motion Ef it(∆pf it) =

(1−θ)(pof it − pf it−1):

Ef it(∆pf it+1) = (1−θ)Ef it(∆p
o
f it+1).

Replacing the above into equation (12) substituting the prior belief (1−βit)Eit(∆poit+1) leads

to the result.

Proof of Proposition 1

Proof. Denote by ∆pof it := pof it − pf it−1 the scaled conditional price change. Starting from

equation (8) subtract pf it−1 from both sides and multiply by (1−θ):

(1−θ)∆pof it = Ef it

{
(1−θ)2

[
µf + (1−Ω)mcrf it + pit − pf it−1

]
+θ(1−θ)(∆pof it+1 +∆pf it)

}
.

Using the expected law of motion Ef it(∆pf it) = (1−θ)∆pof it and the law of iterated expec-

tations for nested sets I f it ⊆ I f it+1:

Ef it(∆pf it+1) = (1−θ)Ef it(∆p
o
f it+1).

Replacing into the above:

Ef it(∆pf it) = Ef it

{
(1−θ)2

[
µf + (1−Ω)mcrf it + pit − pf it +∆pf it

]
+θ∆pf it+1 +θ(1−θ)∆pf it

}
.

Collecting Ef it(∆pf it) and taking the terms that are observed out of the expectations:

Ef it(∆pf it) =
(1−θ)2

θ

[
µf + (1−Ω)mcrf it + (pit − pf it)

]
+Ef it

{
∆pf it+1

}
.

Define now a sampling error ωf it := (1 − θ)∆pof it − ∆pf it . By construction ωf it is mean

zero in the cross-section (as both terms integrate to industry inflation πit). In terms of the

sampling error:

∆pf it =
(1−θ)2

θ

[
µf + (1−Ω)mcrf it + (pit − pf it)

]
+Ef it

{
∆pf it+1

}
+ωf it .

Now subtract from both sides the industry average (i.e. an industry-by-time fixed effect):

∆p̃f it =
(1−θ)2

θ

[
µf + (1−Ω)m̃cf it − p̃f it

]
+Ef it(∆pf it+1)−

∫
Fi
Ejit(∆pjit+1)dj +ωf it .
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Making use of lemma 1:

∆p̃f it =
(1−θ)2

θ

[
µf + (1−Ω)m̃cf it − p̃f it

]
+ βit ·

(
(1−θ)∆pof it+1 −πit+1 + ηf it

)
+ωf it

=
(1−θ)2

θ

[
µf + (1−Ω)m̃cf it − p̃f it

]
+ βit ·

(
∆p̃f it+1 + ηf it

)
+uf it+1 +ωf it

where uf it+1 := βit((1−θ)∆pof it+1 −∆pf it+1) as before. Collecting the two residuals into one

we get the result.

Proof of Proposition 2

Proof. Using the fact that ∆pf it+1 is a mixture between a Bernoulli and a continuously

distributed random variable:

E

(
sign(∆pf it+1)

∣∣∣ I f it) = (1−θ)
(
1 ·P(∆pof it+1 > 0

∣∣∣ I f it)− 1 ·P(∆pof it+1 < 0
∣∣∣ I f it)) .

Ignoring the multiplicative constant, we want to compute the covariance:

Cov
{
ηf it , Ef it sign(∆pof it+1))

}
= E

{
ηf it ·Ef it(sign(∆pof it+1))

}
−E

{
ηf it

}
E

{
Ef it(sign(∆pof it+1))

}
.

First, the expectation of the expected sign is zero by the law of iterated expectation and the

symmetry assumption on the distribution of conditional price changes:

E

{
Ef it(sign(∆pof it+1))

}
= E(sign(∆pof it+1))

= P(∆pof it+1 > 0)−P(∆pof it+1 < 0)

= P(∆pof it+1 > 0)−P(∆pof it+1 > 0) = 0

Let us now focus on the other term:

E

(
ηf it ·

(
P(∆pof it+1 > 0

∣∣∣ I f it)−P(∆pof it+1 < 0
∣∣∣ I f it))) .
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Denote by I(A) the indicator function for the event A. The result would follow immediately

if ηf it ∈ I f it by applying the law of iterated expectations:

E

{
ηf it ·

[
P(∆pof it+1 > 0

∣∣∣ I f it)−P(∆pof it+1 < 0
∣∣∣ I f it)]} =

E

{
ηf it ·

[
E

(
I(∆pof it+1 > 0)

∣∣∣ I f it)−E(
I(∆pof it+1 < 0)

∣∣∣ I f it)]} =

E

{
E

(
ηf it · I(∆pof it+1 > 0)

∣∣∣ I f it)−E(
ηf it · I(∆pof it+1 < 0)

∣∣∣ I f it)} =

E

{
ηf it ·

(
I(∆pof it+1 > 0)− I(∆pof it+1 < 0)

)}
=

E

{
ηf it ·

(
I(∆pof it+1 > 0)− I(∆pof it+1 > 0)

)}
=0.

Finally, we notice that ηf it can be recovered upon observing the private signal sf it
and setting the price. Because firms are committing at time zero to a pricing rule for every

realization of the information set I f it , in any given period t the entire path of future reset

prices {pof it+τ }τ≥0 is directly observable as it is only a function of I f it . Therefore from

equation (11), upon observing sf it and having set pof it and therefore {pof it+τ }τ≥1, firms can

recover the noise ηf it .

Proof of Proposition 3

Proof. Denote the average industry belief of an unconditional price change with Ēit(πit+1) :=∫
Fi
Ef it(∆pf it+1)df . The average belief is given by Ēit(πit+1) = Eit(∆pf it+1) + βit(πit+1 −

Eit(∆pf it+1)), where Eit(∆pf it+1) is the prior mean. We notice that the prior belief contains

no information about the identity of firm f , hence Eit(∆pf it+1) = Eit(πit+1). Aggregating

the belief from lemma 1 across all f ∈ Fi and industries i ∈ [0,1]:∫
[0,1]

∫
Fi
Ef it(∆pf it+1)df di =

∫
[0,1]

∫
Fi

(
Ēit(πit+1) + βit((1−θ)∆pof it+1 −πit+1) + βitηf it+1

)
df di

Because βit is constant within an industry and (1−θ)∆pof it+1 averages to πit+1:

∫
Fi
βit((1−θ)∆pof it+1 −πit+1)df = 0.

Moreover, because the noise is mean zero in the cross-section,
∫
Fi
βitηf it+1df = 0. We now

use the fact that the information set I it contains only information regarding regarding in-

dustry i, so that Eit(πit+1) = Eit(πt+1). Denoting by Et(πt+1) :=
∫

[0,1]Eit(πt+1)di the average
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prior belief, the average posterior belief can be rewritten as:∫
[0,1]

∫
Fi
Ef it(∆pf it+1)df di =

∫
[0,1]

[Eit(πit+1) + βit (πit+1 −Eit(πit+1))]di

=Et(πt+1) +
(∫

[0,1]
βitdi

)
· (πt+1 −Et(πt+1)) + Cov(βit , πit+1 −Eit(πit+1))

=Et(πt+1) +
(∫

[0,1]
βitdi

)
· (πt+1 −Et(πt+1)) + Cov(βit ,πit+1).

The last line follows from Cov(βit ,Eit(πit+1)) = 0 because βit is only a function of the prior

variance which is independent of the prior mean under normal distributions (Basu’s theo-

rem). Denote by βt :=
∫

[0,1]βitdi. Conditionally on the information set I it , the second term

is a mean-zero Gaussian expectational error because it is a linear combination of Gaussian

mean-zero random variables. Starting from the industry-level error term:

πit+1 −Eit(πit+1) =
∫
Fi

(∆pf it+1|t −Eit(∆pf it+1|t)) df ∼N .

Therefore averaging once more, we obtain πt+1−Et(πt+1) ∼N . As βit ∈ I it can be treated as

a non-stochastic parameter, it follows that the product between the error and the Kalman

gain is a Gaussian random variable with mean zero and a time-varying volatility.

We are now ready to derive the NKPC under information frictions. Rearranging the

first-order condition (8) we obtain equation (14):

∆pf it =
(1−θ)2

θ

[
(1−Ω)(µ+mcrf it)− p̃f it

]
+Ef it(∆pf it+1) +uf it ,

where uf it is an i.i.d. error that satisfies
∫

[0,1]

∫
Fi
uf itdf di = 0 by the law of large numbers.

Integrating both sides across all firms and industries and making use of the assumption on

constant short-run returns to scale in the aggregate:

πt =
(1−θ)2

θ
(1−Ω)(µ+mcrt ) +

∫
i∈[0,1]

∫
Fi

(
Ef it(∆pf it+1)

)
df di

Replacing the average belief leads to the desired formula for the NKPC.

Proof of Corollary 1

Proof. Denote an unanticipated nominal cost shock with ct+1 < I t that leads to a unitary

increase in inflation tomorrow. The increase in current inflation due to the cost shock is

bounded above by one, which is the upper bound for the pass-through coefficient of any
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nominal shock. Therefore:

1 ≥ ∂πt
∂ct+1

= βt +
∂Cov(βit ,πit+1)

∂ct+1

The Kalman gain βit is a function only of information that is common knowledge, but the

shock is unanticipated. Hence it has no effect on it. For small deviations from the symmet-

ric steady state, we can apply the dominated convergence theorem to switch integration

and derivative:

βt ≤ 1−
∂Cov(βit ,πit+1)

∂ct+1
= 1−Cov

(
βit ,

∂πit+1

∂ct+1

)
≤ 1.

We now notice that the covariance cannot be negative and moreover it is an even function:

Cov
(
βit ,

∂πit+1

∂ct+1

)
= Cov

(
βit ,−

∂πit+1

∂ct+1

)
,

because βit does not depend on the sign of the shock. In addition, the covariance is smooth

for small shocks:

lim
ct+1↓0

Cov
(
βit ,

∂πit+1

∂ct+1

)
= lim
ct+1↑0

Cov
(
βit ,

∂πit+1

∂ct+1

)
Hence the limit exists, and the covariance function admits a zero at Cov(·,0) = 0. Because

we are considering small deviations from the steady state, then there is either only one

zero or the covariance is constant at zero. Therefore, as the covariance is not constant by

assumption, it must be that:

∂Cov(βit ,πit+1)
∂ct+1

> 0 a.s. ct+1 , 0,

which concludes the proof.

Proof of Proposition 4.

Proof. Up to a second-order approximation around the symmetric steady state with no

inflation and no dispersion (σ2
e,i = 0), the Kalman gain is proportional to the signal-to-noise

ratio:

βit =

1 +
σ2
η

σ2
e,it

−1

≈
1 +

σ2
η

σ2
e,i

−1

+
1
2

1 +
σ2
η

σ2
e,i

−2  σ2
η

σ4
e,i

 · (σ2
e,it − σ

2
e,i) =

1
2

σ2
e,it

σ2
η
.
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Using the assumption of constant elasticity and linearity, the covariance simplifies to:

Cov(βit ,πit+1) ≈ 1

2σ2
η

∂σ2
e,it

∂V (∆pf it+1)

∂V (∆pf it+1)

∂π2
it+1

Cov(π2
it+1,πit+1).

Using formula (20), because the indirect effect is of higher order as it depends on the

change in βit , we obtain:
∂V (∆pf it+1)

∂π2
it+1

≈ 1−θ
θ

.

Using the relationship between the raw moments and the cumulants:

Cov(π2
it+1,πit+1) =

∫
[0,1]

π3
it+1di −

(∫
[0,1]

π2
it+1di

)(∫
[0,1]

πit+1di

)
= (π3

t+1 + 3πt+1σ
2
t +γtσ

3
t )−πt+1(π2

t+1 + σ2
t )

= 2πt+1σ
2
t +γtσ

3
t .

Putting all together leads to the formula in the text.

Proof of Proposition 5.

Proof. To derive a solution, it is more convenient to aggregate the first-order conditions

starting from equation (9), which has on the RHS the lag of the price rather than the current

price. Aggregating and following the same steps as before we obtain:

πet =
(1−θ)2

1−θ(1−θ)
[(1−Ω)(mcnt − pt−1) +Ωπet ]+

θ
1−θ(1−θ)

1 + ζ
θ

1−θ
σ2
t

σ2
η

Et(πet+1). (A.10)

Equivalently, we can obtain the above by rearranging equation (25).

Fix the price level at pt−1 and consider a shock (εt) to aggregate nominal marginal

cost (mcnt =mcnt−1 + εt) that leads to the realized dispersion σ2
t . We look for a solution with

time-varying coefficient Ψt of the following form:

πet = Ψt(mc
n
t − pt−1) = Ψt(mc

r
t−1 + εt).

Using the random walk assumption of marginal cost:

Et(π
e
t+1) = Et

(
ζt+1(mcnt+1 − p

e
t )
)

= Ψt (mcnt −Ψt(mcnt − pt−1) + pt−1)

= Ψt(1−Ψt) (mcnt − pt−1)
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Replacing the guess and the above into equation (A.10) leads to the following restriction

on the undetermined coefficient:

Ψt =
(1−θ)2

1−θ(1−θ)
[1−Ω+ΨtΩ] +

θ
1−θ(1−θ)

1 + ζ
θ

1−θ
σ2
t

σ2
η

Ψt(1−Ψt). (A.11)

For σ2
t sufficiently close to the symmetric steady state (with no price dispersion σ2 = 0),

equation (A.11) has two roots with opposite signs. We look for an analytical solution as a

function of σ2
t that is positive at σ2 = 0. Rewrite the formula as follows:

AtΨ
2
t +BtΨt +C = 0

where

At :=
θ

1−θ(1−θ)

1 + ζ
θ

1−θ
σ2
t

σ2
η

 ,
Bt := 1−Ω (1−θ)2

1−θ(1−θ)
−At ,

C := −(1−Ω)
(1−θ)2

1−θ(1−θ)
.

The positive root is given by:

Ψt =
−Bt +

√
B2
t − 4AtC

2At
.

The quadratic formula has a solution for σ2
t = 0 and is continuous at σ2

t = 0, thus a solution

exists for a sufficiently small σ2
t /σ

2
η .

Finally, it is immediate to verify from equation (A.11) that Ψt is increasing in σ2
t .

Therefore, as σ2
t is increasing in ε2

t , Ψt is increasing in ε2
t .
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B Additional Figures

Figure A.1: Reduced-form Evidence of State-dependent Pass-through
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Notes. Estimates of the reduced-form coefficients of regression 19. The red dots are data from a subsample
corresponding to all the firm-level observations belonging to an industry with an inflation rate in the top 10%
of all the industry inflation realizations (corresponding to about 8%). The blue dots are data on the remaining
subsample.
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Figure A.2: Fraction of firms that did not adjust Price in Previous Month
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Notes. This plot reflects the fraction of firms that changed price as reported in the NBB-BS (6 month moving
average).
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C Data and Measurement

In this section we provide additional details on the various administrative data sources and

data cleaning procedures that underlies the operationalization of our empirical framework.

Most of the material in this section draws on Gagliardone et al. (2023, 2024), amended to

account for the higher frequency of the estimation and additional data sources.

C.1 Data Sources and Data Cleaning

We use information from PRODCOM to compute the monthly change in product- and

firm-level prices and to define the boundaries of markets (industries) in which firms com-

pete. PRODCOM is a large-scale survey commissioned by Eurostat and administered in

Belgium by the National Statistical Office. The PRODCOM sampling strategy is designed

to cover at least 90% of domestic production value within each manufacturing industry (4-

digit NACE codes) by surveying all firms operating in the country with (i) a minimum of

20 employees or (ii) total revenue above 4.5 million euros (European Commission 2014).

Firms are required to disclose, on a monthly basis, product-specific physical quantities

(e.g., volume, kg., m2, etc.) of production sold and the value of production sold (in euros)

for all their manufacturing products. Products are defined in PRODCOM by an 8-digit

PC code (e.g., 15.20.13.61 is ”Mens’s sandals”, 15.20.13.62 is ”Womans’s sandals”, and

15.20.13.63 is ”Children’s sandals”). Industries are defined by the first four digits of the

product code (e.g., 15.20 is ”Manufacture of footwear”). Sectors, i.e. more aggregate struc-

tures within the economy, are defined by the first two digits of the product codes (e.g., CB

is ”Textile, apparel, leather and related products”).

In the raw data, there are approximately 4,000 product headings distributed across

13 manufacturing sectors. The PC product codes have been revised several times between

1995 and 2023, with a substantial overhaul in 2008. We use the conversion tables pro-

vided by Eurostat and firm-specific information on firms’ product portfolios to harmonize

the 8-digit product codes across consecutive months and harmonize 4-digit industry codes

over time.33 In most cases, the conversion tables provide a unique mapping of the 8-

digit product codes across consecutive years. In a limited number of cases, the mapping

is many-to-one, one-to-many, or many-to-many. The many-to-one mapping is straightfor-

ward, while the one-to-many and many-to-many mappings could be problematic. We are

able to handle most of these cases using information on the basket of products produced

by each firm.34 In a limited number of cases, we do not have sufficient information to re-

33The official conversion tables are available at https://ec.europa.eu/eurostat/ramon. The harmonization of
the industry code essentially consists of harmonizing the NACE Rev.1 industry, used before 2008, to the NACE
Rev.2 industry codes, used from 2008.

34For example, consider a case where the official mapping indicates that product 11.11.11.11 in year t could
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solve the uncertainty regarding the mapping. We drop these observations from the sample.

Table A.1 reports the list of manufacturing sectors and their 2-digit PC codes.

We construct product-level prices (unit values) by dividing product-level sales by

product-level quantities sold. As explained in the body of the paper, we are interested

in domestic prices, i.e., prices charged by producers in Belgium. PRODCOM does not

require firms to separately report production and sales to domestic and international cus-

tomers. Therefore, we recover domestic values and quantities sold by combining infor-

mation from PRODCOM with data on firms’ product-level exports (quantities and sales)

available through Belgian Customs (for extra-EU trade, “Extrastat”) and the Intrastat In-

quiry (for intra-EU trade).35 We use the official conversion tables provided by Eurostat to

map the CN product code classification used in the international trade data to the PROD-

COM product code classification. In most cases, the CN-to-PC conversion involves either

a one-to-one or many-to-one mapping, which poses no issues. We drop observations that

involve one-to-many and many-to-many mappings.

We apply the following filters and data manipulations to the PRODCOM data set.

First, we retain firms’ observations if there was positive production reported for at least one

product in all months throughout the year. In the rare cases where a firm reports positive

values but quantities are missing, we impute the quantity sold from the average value-to-

quantity ratio in the months where both values and quantities are reported. Second, we

require firms to file VAT declarations and Social Security declarations (as explained below).

These two data sources allow us to measure firms’ marginal costs.

The second important use of international trade data is to obtain information on

international competitors selling manufacturing products in Belgium. For each domestic

firm, the merged Extrastat-Intrastat data reports the quantity purchased (in kg.) and sales

(converted to euros) of different manufacturing products (about 10,000 distinct CN prod-

uct headings) purchased by Belgian firms from each foreign country. As is standard when

dealing with customs data, we define a foreign competitor as a foreign country-domestic

buyer pair. For each foreign competitor, we aggregate the product-level sales and quantity

sold at the monthly level and compute monthly prices (unit values) by taking the ratio of

the two.36

map to either 22.22.22.21 or 22.22.22.22 in year t + 1. Suppose two firms, f1 and f2, report in period t sales of
product 11.11.11.11 in year t. If f1 reports only sales of 22.22.22.21 and f2 only reports sales of 22.22.22.22 in
year t + 1 we infer that we should map 11.11.11.11 to 22.22.22.21 for the former and 11.11.11.11 to 22.22.22.22
for the latter.

35In constructing our measure of domestic sales, we address issues related to carry-along trade, which might
overstate the amount of production by firms that import products destined for immediate sales.

36Some CN codes change over time (although to a lesser extent than PC codes). We use the official conversion
tables, available on the Eurostat website, to map CN product codes across consecutive years. We make adjust-
ments only if the code change is one-to-one between two years. We do not account for changes in PC codes that
involve splitting into multiple codes or multiple PC codes combining into one code. Effectively, these changes in
the PC codes are treated as if new products are generated.
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We leverage data from two administrative sources to measure firms’ total production

(turnover) and variable production costs on a monthly basis. First, Belgian firms file VAT

declarations to the tax authority that contain information on the total sales of the enterprise

as well as information on purchases of raw materials and other goods and services that en-

tail VAT-liable transactions, including domestic and international transactions. While this

submission requirement applies to quasi all Belgian firms, small firms — i.e. firms having

an annual turnover < 2.5M euros excl. VAT — are allowed to submit the information on a

quarterly frequency. We restrict our analysis to the (larger) firms that submit on a monthly

frequency. In view of the the stratified sampling strategy of PRODCOM (supra), this has a

small impact on the composition of our sample.

Second, we obtain information on employment and labor costs (wage bill) from the

Social Security declarations filed quarterly by each Belgian firm with the Department of

Social Security of Belgium. We smooth the quarterly wage mass equally across the three

months of the quarter (and assume an equal headcount in each month). We qualify this as

an innocuous assumption in view of tight labor market protection laws in Belgium, such as

restrictions on hiring or firing, and work rules. Moreover, in manufacturing, the segment

of a firms’ labor force that can most easily be scaled up/down in the short run is often

employed through temporary employment agencies. Importantly, in such a contracting

setup, the wage expense shows up as a component of the monthly VAT declaration of the

manufacturing firm (as a payment to the employment agency, who, in turn pays a wage

that is tracked through Social Security declarations).

We sum firm-monthly level expenses on intermediates and labor to obtain a mea-

sure of total variable costs, which we use to construct firms’ marginal costs. We multiply

these costs by the ratio of total manufacturing sales (from PRODCOM) to total sales (from

the VAT declarations) to adjust for the fact that some firms also have production outside

manufacturing.37

Finally, we apply the following data-cleaning steps to address missing values and

outliers. (i) We focus on manufacturing industries defined by the NACE 2-digit codes

15—36, dropping from our sample all product headings that correspond to mining and

quarrying, and all product codes corresponding to industrial services. (ii) As is standard,

we exclude firms that operate in the “Coke and refined petroleum products” sector and

the “Pharmaceuticals, medicinal chemical, and botanical products” sector, whose output

prices are often privately bargained or determined in international (spot) markets. We

also exclude firms operating in the “Other manufacturing and repair and installation of

machinery and equipment” sector, a residual grouping that encompasses firms produc-

37We drop observations referring to firms whose sales from manufacturing products (as measured in PROD-
COM) are lower than seventy percent of total firm-level sales (as reported in the VAT declarations). This ensures
that our sample includes firms whose real activity is primarily, if not entirely, in manufacturing.
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ing diverse and varied products for which it is difficult to define an appropriate set of

competitors. (iii) We keep only observations for which we are able to compute product-

level price indexes, the corresponding quantity indexes, competitors’ price indexes, and

marginal costs. (iv) We drop observations for which the month-to-month change of either

the firm-level price index or marginal costs is greater than 100% in absolute value. (v)

Finally, for each firm-industry pair that enters our dataset discontinuously, we keep only

the longest continuous time spell. This ensures that each time series used in the estimation

has no gaps, which would otherwise force us to interpolate by making assumptions about

prices and marginal costs when the data is not recorded. We only preserve firm-industry

observations for which the time spell exceeds 24 months.

Table A.1: List of manufacturing sectors

Sector Sector definition
NACE

2-digits codes
CA Food products, beverages and tobacco products 10–12
CB Textiles, apparel, leather and related products 13–15
CC Wood and paper products, and printing 16–18
CE Chemicals and chemical products 20
CG Rubber and plastics products,

22–23
and other non-metallic mineral products

CH Basic metals and fabricated metal products,
24–25

except machinery and equipment
CI Computer, electronic and optical products 26
CJ Electrical equipment 27
CK Machinery and equipment n.e.c. 28
CL Transport equipment 29–30

Notes. This table reports the list of manufacturing sectors in our sample and the corresponding 2-digit NACE
codes.

C.2 Construction of price indexes

We construct a set of indexes that capture price changes in manufacturing goods at various

levels of aggregation (firm-industry, firm, industry, individual manufacturing sector, and

whole manufacturing sector).

Firm-industry price index. The main variable of interest is the price of domestically

sold manufacturing products at the firm-industry level, Pf it , for both domestic and foreign

producers. We construct this variable using information on price changes at the most

disaggregated level allowed by the data.

Due to repeated product code revisions, a consistent 8-digit product code taxonomy
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does not exist across the entire sample period.38 Therefore, we compute the sequence of

price changes across consecutive time periods (t and t + 1) by mapping the product codes

at t + 1 to their corresponding codes at t, aggregating them at the firm-industry level, and

recovering the time series of the firm-industry price index (in levels) by concatenating

monthly price changes.

Specifically, denote by Pf it the set of products manufactured by firm f and by Ppt the

price (unit value) of a given product p ∈ Pf it . We first compute the gross price change for

each product, Ppt/Ppt−1. In doing so, we appropriately account for any changes in product

codes and drop product-level observations with abnormally large price jumps in a given

month (Ppt/Ppt−1 > 3 or Ppt/Ppt−1 < 1/3). We then construct the Törnqvist index, which

measures the firm-industry price change:

Pf it/Pf it−1 =
∏
p∈Pf it

(Ppt/Ppt−1)s̄pt , (A.12)

where s̄pt is a Törnqvist weight computed as the average of the sale shares between t and

t − 1: s̄pt :=
spt+spt−1

2 .39 Finally, we use the sequence of monthly price changes to construct

the time series of firm-industry prices (in levels):

Pf it = Pf 0

t∏
τ=t0f +1

(
Pf τ /Pf τ−1

)
, (A.13)

where t0f denotes the first month when f appears in our data, and Pf 0 is the price level

in that month. We normalize Pf 0 to one for all firm-industry pairs f in our dataset. As

discussed in the paper, this normalization is immaterial for our empirical analysis, as any

level effects are absorbed by the firm-industry fixed effects included in all our empirical

specifications.

Firm price index. As discussed in the paper, the vast majority of firms in our data op-

erate in only one (4-digit) industry, implying that the firm-industry price index, Pf it , and

the firm price index, P̄f it , coincide. However, in a limited number of cases, it becomes nec-

essary to construct a firm’s price index that aggregates across different firm-industry price

indexes. In doing this, we construct the firm-level price index P̄f it following a method

similar to the one described above. Specifically, we construct a Törnqvist index that ag-

gregates across price changes of the individual (4-digit) industry bundles i ∈ If produced

38See Appendix C.1 for additional information on the data.
39This index accounts for the presence of multi-product firms by averaging across products produced by the

same firm in a given industry. The Törnqvist weights, s̄pt , give larger weights to those products that account for
a larger share of the firm’s turnover.

A.20



by firm f in month t: P̄f it/P̄f it−1 =
∏
i∈If (Pf it/Pf it−1)s̄f it , with Törnqvist weights defined as

s̄f it := (sf it + sf it−1)/2, where sf it is the share of sales of industry i in the firms’ total sales

(across manufacturing industries). We then concatenate the monthly price changes above

to obtain the price index P̄f it , normalizing the level of the price index to one in the first

month when the firm first appears in our dataset. Note that for single-industry firms the

price index P̄f it coincides with the firm-industry price index Pf it in (A.13).

Competitors price index. Using a similar approach, we construct the competitors’ price

index for each domestic firm. We start by computing monthly price changes: P −fit /P
−f
it−1 =∏

k∈Fi /f (Pkt/Pkt−1)s̄
−f
kt , with s̄−fkt := 1

2

(
skt

1−sf it + skt−1
1−sf it−1

)
denoting a Törnqvist weight constructed

by averaging the residual revenue share of competitors in the industry at time t (net of firm

f revenues) with that at time t−1. We then concatenate the changes, normalizing the level

of the price index in the first period to one. Also, in this case, the normalization is imma-

terial for estimation purposes as our empirical model always includes firm fixed effects.

Note that the set of domestic competitors for each Belgian producer, denoted in the paper

by Fi , includes not only other Belgian manufacturers operating in the same industry but

also foreign manufacturers that belong to the same industry and sell to Belgian customers.

Industry, sector, and aggregate price index. We construct the industry-level, sector-

level, and aggregate (manufacturing) price indexes by aggregating monthly firm-level price

changes. The formula to construct the percentage change in these price indexes is analo-

gous to the one in (A.12), where now the Törnqvist weights assigned to each firm-industry

price change, Pf it/Pf it−1, capture the (weighted) average market shares of the firm in its

own industry, sector, or manufacturing, respectively. Once again, the level of the indexes

is constructed by concatenating changes and normalizing the level of the price index to

one for the first observation in the time series.
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