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Abstract

We use microdata on firms’ prices and production costs to study inflation
dynamics in high- and low-inflation environments. We document that prices
are set in a state-dependent way. Both the probability of a firm adjusting
its price and the magnitude of such adjustments are functions of the firm’s
price gap–the percentage difference between a firm’s ideal and current price.
We then develop a generalized state-dependent pricing model to account for
Belgian PPI inflation over the period 1999:Q1 to 2023:Q4. Conditional on
a path of cost shocks extracted from the data, the model explains both the
low and stable inflation of the pre-pandemic period as well as the pandemic
era surge. In normal times, the adjustment probabilities are approximately
constant and the model resembles a framework with time-dependent pricing
as in Calvo (1983). During the surge, the model captures the rise in inflation
along with the change in the price adjustment frequency, which is the driver
of the nonlinear dynamics.

* NewYorkUniversity. Email: luca.gagliardone@nyu.edu; †NewYorkUniversity andNBER. Email: mark.gertler@nyu.edu;
‡NewYork University, Stern School of Business. Email: slenzu@stern.nyu.edu; §National Bank of Belgium and KU Leuven.
Email: joris.tielens@nbb.be. We thank Al-Mahdi Ebsim for outstanding research assistance and Virgiliu Midrigan, Luminita
Stevens for helpful comments and conversations. The views expressed in this paper are those of the authors and do not
necessarily reflect the views of the National Bank of Belgium, the Eurosystem, or any other institution with which the
authors are affiliated.



1 Introduction

In this paper, we use microdata on firms’ prices and costs to study inflation
dynamics in normal times and during the recent inflation surge. The key variable
in our analysis is the firm’s price gap, that is the gap between its ideal price (after
the realization of shocks) and the price the firm is currently charging.

Every model with nominal price rigidity features a notion of a price gap.
What distinguishes different models is how firms adjust their prices in response
to their price gaps. For example, in the time-dependent pricing model of Calvo
(1983), firms can adjust their prices with a fixed probability and the firm’s expected
price change is linear in its price gap. Conversely, in state-dependent pricing
models (often known as menu cost models), the firm’s expected price change is a
nonlinear function of the price gaps because both the change in prices conditional
on adjustment and the adjustment frequency are endogenous functions of the gap.

The distinction between time- and state-dependent pricing is less significant
when the economy is in a low inflation environment, where shocks to desired
prices are typically small on average1. However, it becomes important in high
inflation environments, which typically involve large shocks to desired prices.
The recent inflation surge well illustrates these issues. Figure 1 displays the
year-over-year percentage change in producer price index (PPI) for the Belgian
manufacturing sector against the average frequency of price adjustment, between
1999:Q1 and 2023:Q4. Before the pandemic, both inflation and the average
frequency were low and relatively stable. Starting in early 2021, inflation surged
significantly and then began to collapse in mid-2022. Tracking inflation, the
frequency of price adjustment displays a boom and bust, more than doubling over
the course of the year, before gradually returning to its long-term trend. These
dynamics are similar to what occurred in the US and various other developed
economies worldwide (Blanco et al. 2024b; Cavallo et al. 2024).

We extend the micro-level data set assembled in Gagliardone et al. (2024)
1See, for example, Dias et al. (2007), Gertler and Leahy (2008), Alvarez et al. (2017), and Auclert

et al. (2024).
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Figure 1: Aggregate inflation and frequency of price adjustment
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Notes. This figure shows the time series of PPI manufacturing inflation along with the annual
frequency of price adjustments. The former is computed as the year-over-year percentage change
in the aggregate PPI. The latter is calculated as a rolling average of the quarterly frequency of price
adjustments over the previous four quarters.

to include the recent inflation surge. This dataset collects administrative records
on product-level output quantities, sales, and production costs at the quarterly
frequency for Belgian manufacturing firms. Using this data, we construct a notion
of price gaps for individual firms that accounts for variation in costs, prices, and
competitors prices. We analyze the data through the lens of a tractable menu cost
model in tradition of the classic generalized state-dependent models proposed by
Caballero and Engel (1993, 2007), Golosov and Lucas (2007), and Nakamura and
Steinsson (2010). The model nests time-dependent Calvo (1983), as a special case.
We use this framework to derive testable predictions that relate, in the microdata,
price changes to price gaps. We also use the model to explain the time-series of
aggregate inflation accounting for the dynamics of aggregate costs.

Our analysis produces two main sets of results. At the micro level, we
document strong evidence in favor of the state-dependent nature of firms’ pricing
decisions. First, we show that the probability of firm price adjustment (extensive
margin) is increasing and nonlinear in the price gap. Second, when firms
adjust their prices (intensive margin), they do so in order to close the price
gap. Third, the non-linearity in the speed of price adjustment explains the
non-linear inflation dynamics observed in the data after large shocks. During

2



the post-pandemic period, we show how large cost shocks shifted the entire
distribution of price gaps, displacingmany firms away from their optimal price and
inducing large adjustments along the extensive margin. Fourth, we also show that
this mechanism was not at work in the low-inflation pre-pandemic period. When
shocks are small on average, price changes still depend on price gaps. However, as
in a standard Calvo model, the frequency of price adjustment is roughly constant,
the relationship between price changes and price is linear, and the passthrough
rate in the microdata is roughly constant.

The second set of results pertains to accounting for inflation at the macro
level. We leverage our micro data to construct an aggregate cost index for
the Belgian manufacturing sector. Descriptive evidence shows how inflation
fluctuations closely align with the variations in firm’s production costs throughout
the entire period. However, there is stickiness such that inflation moves less than
costs do. We also show that the sharp rise and fall in costs (and intermediates cost,
in particular), rather than a change in markups, appears to be main driver of the
surge and subsequent drop in inflation observed in the post-pandemic period.

Next, we formally assess the capacity of our menu cost model to explain
aggregate inflation over the entire sample period. We feed into the model the
marginal cost index described above and compare the model with the time series
observed in the data. We find that themodel tracks the high-frequency fluctuations
in manufacturing inflation remarkably well, both during the moderate inflation
regime characterizing the pre-pandemic period and during the post-pandemic
inflation surge and bust. Specifically, it captures the stable behavior of the
adjustment frequency pre-pandemic as well as the sharp jump in the adjustment
frequency following the onset of the pandemic, both in terms of timing and
magnitude. In contrast, a standard Calvo model, fed with the same cost sequence,
can account for only about two-thirds of the inflation.

Earlier research provided strong evidence of the state-dependent nature of
firm pricing decisions and showed how this class of models helps account for
inflation surges after large aggregate shocks. These include work by Alvarez et al.
(2016), Alvarez et al. (2022), and Midrigan (2011) on menu cost models; Alvarez
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et al. (2019) and Karadi and Reiff (2019), presenting evidence of state-dependent
pricing through case studies of hyperinflation in Argentina and major tax shocks
in Hungary; and, more recently, the works of Blanco et al. (2024a, 2024b), Cavallo
et al. (2024), andMorales-Jiménez and Stevens (2024), which apply state-dependent
frameworks to analyze the recent inflation surge. The key distinction between
these studies and ours lies in our ability to construct a high-frequency measure of
price gaps at the firm level. As we have emphasized above, this is the fundamental
building block of both time- and state-dependent pricing models. By analyzing
how the size and frequency of price adjustments relate to price gaps in the
microdata, we can directly assess the degree to which and under which conditions
firms’ pricing strategies conform with the theory.

Our study also bears relevance to the works of Eichenbaum et al. (2011) and
Karadi et al. (2021). The former uses data on prices and costs from a large food and
drug retailer to develop a "reference price" metric. The latter employs microdata
on supermarket prices to formulate a concept of reset prices, derived from the
average price at which the same product is offered by rivals. We observe high
frequency cost and price data for the entire Belgian manufacturing sector over a
long sample period. This allows us to construct an empirical measure of firm reset
prices and price gaps that factors in both the firms’ costs and the pricing of their
competitors.

Finally, the results in this paper connect with our earlier work, Gagliardone
et al. (2024) on the estimation of the slope of the cost-based New Keynesian
Phillips curve. Using Belgian microdata for the pre-pandemic period, we used
a time-dependent Calvo model to identify the structure parameters that enter
the slope. This paper lends additional empirical support to that identification
assumption by showing that the relationship between price gaps and price changes
is approximately linear in the absence of large shocks, due to the stability of the
adjustment frequency.

The paper proceeds as follows. Section 2 presents the theoretical framework
and derives testable implications. Section 3 describes our dataset and the empirical
measures of prices and price gaps. Section 4 provides empirical evidence showing
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that the model predictions linking price adjustments with price gaps align with
the microdata. We outline the calibration process and provide model simulations
in Section 6, showing how the calibrated model explains the inflation time series
and the frequency of price adjustments, including the rise during the pandemic.
Section 7 offers concluding remarks.

2 Theoretical framework

Our baseline framework is a variation of a standard discrete-time menu cost
model. To fit the data, we allow for both random menu costs as in Caballero
and Engel (2007) and random free price adjustments as in the “CalvoPlus” model
of Nakamura and Steinsson (2010).2 For tractability, we follow Alvarez et al.
(2023) working with a quadratic approximation of the firm’s profit function and
permanent idiosyncratic shocks. In addition, motivated by our previous work
(Gagliardone et al. 2024), we allow for strategic complementarities in price setting.
This framework nests a standard Calvo (1983) as a special case.

2.1 A tractable state dependent pricing model

In each period 𝑡 , the economy is populated by a continuum of heterogeneous firms
𝑓 ∈ [0, 1] selling a single differentiated product under monopolistic competition
facing a demand function à la Kimball (1995). Using lower case letters to denote
the logarithm of the corresponding upper case variables, we denote by 𝑝𝑡 (𝑓 ) the
firm’s price and by 𝑝𝑡 the aggregate price index. Up to a first-order approximation
around the symmetric steady state, the latter is given by:

𝑝𝑡 ≈
∫
[0,1]

(
𝑝𝑡 (𝑓 ) − 𝜑𝑡 (𝑓 )

)
𝑑 𝑓 ,

where 𝜑𝑡 (𝑓 ) denotes a firm-specific log-taste shock, i.i.d. over firms and time.
2See also Dotsey et al. (1999) for a discussion of random menu costs models in a general

equilibrium setting.
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Technology. Each firm operates with a constant return to scale production
technology 𝑦𝑡 (𝑓 ) = 𝑧𝑡 (𝑓 ) + 𝑙𝑡 (𝑓 ), which uses a composite input 𝑙𝑡 (𝑓 ) and is
characterized by a total factor productivity 𝑧𝑡 (𝑓 ). As is standard, we assume that
the latter evolves as a random walk, 𝑧𝑡 (𝑓 ) = 𝑧𝑡−1(𝑓 ) + 𝜁𝑡 (𝑓 ), where 𝜁𝑡 (𝑓 ) denotes
an idiosyncratic shock that is mean zero, and i.i.d. over time and firms.
Firms’ nominal marginal cost is given by:

𝑚𝑐𝑡 (𝑓 ) =𝑚𝑐𝑡 + 𝑧𝑡 (𝑓 ). (1)

The term 𝑚𝑐𝑡 captures an aggregate nominal cost shifter. Consistent with the
evidence, we assume that𝑚𝑐𝑡 obeys a random walk𝑚𝑐𝑡 =𝑚𝑐𝑡−1 + 𝑔𝑡 . We assume
that 𝑔𝑡 is common across firms, i.i.d. over time, drawn from a distribution with
a symmetric, uni-modal, and continuously differentiable density with mean 𝜇𝑔.
For analytical tractability, in what follows, we assume no trend inflation (𝜇𝑔 = 0).
Although this assumption might seem restrictive, Nakamura et al. (2018), Alvarez
et al. (2019) and Alvarez et al. (2022) show that an economy with zero inflation
provides an accurate approximation for economies where inflation is low, as the
effects on decision rules are of second order.We relax this assumption in the
quantitative exercises of Section 6, where we allow for a small trend in marginal
costs to match trend inflation in the data.

Profit maximization. Firms choose prices to maximize the present value of
profits, subject to nominal rigidities. Each firm pays a fixed cost 𝜒𝑡 (𝑓 ) when they
adjust their price from the price charged in the previous period. As in Caballero
and Engel (2007), the fixed cost 𝜒𝑡 (𝑓 ) is the realization of a random variable, i.i.d.
across firms and time, and uniformly distributed over [0, 𝜒]. As in the CalvoPlus
model, we also assume that with probability (1 − 𝜃𝑜) the fixed cost is zero, which
implies that the firm can adjust its price for free.

We denote by 𝑝𝑜𝑡 (𝑓 ) the firm’s static target price, that is, the price it would
choose absent nominal rigidities. Under Kimball preferences, a firm’s price
elasticity of demand increases in its relative price (𝑝𝑡 (𝑓 ) − 𝑝𝑡 ), which makes the
desired markup decrease in relative prices. In Appendix A, this implies that 𝑝𝑜𝑡 (𝑓 )
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is given by the sum of the steady-state (log) markup, 𝜇, and a convex combination
of the firm’s nominal marginal cost and the price index:

𝑝𝑜𝑡 (𝑓 ) = 𝜇 + (1 − Ω)𝑚𝑐𝑡 (𝑓 ) + Ω(𝑝𝑡 + 𝜑𝑡 (𝑓 )), (2)

where the price index accounts for strategic complementarities in price setting.
The scalar Ω ∈ [0, 1) captures the strength of such complementarities. The taste
shock 𝜑𝑡 (𝑓 ) shows up in the target price as noise.

Following Alvarez et al. (2023), we take a quadratic approximation of the
per-period profit function around the static optimum 𝑝𝑡 (𝑓 ) = 𝑝𝑜𝑡 (𝑓 ). We define
the price gap:

𝑥𝑡 (𝑓 ) ≡ 𝑝𝑜𝑡 (𝑓 ) − 𝑝𝑡 (𝑓 ).

Normalizing by steady-state profits then yields the following loss function that
measures the cost of deviations of the price from the target:

Π𝑡 (𝑓 ) ≈ −𝜎 (𝜎 − 1)
2(1 − Ω)

(
𝑥𝑡 (𝑓 )

)2
,

where 𝜎 is the steady-state price elasticity of demand and steady-state profits
are equal to 1/𝜎 . Note how the weight on the loss function is increasing
in the complementarity parameter Ω. This is due to the fact that strategic
complementarities increase the curvature of the profit function, and therefore
raise the firm’s desire to keep the price close to the target relative to the cost of
adjustment.

Let I𝑡 (𝑓 ) be an indicator function that equals one if the firm adjusts its price
and zero otherwise. Then, the value of the firm normalized by steady-state profits
is given by:

𝑉𝑡 (𝑓 ) = max
{ 𝑥𝑡 (𝑓 ) , I𝑡 (𝑓 ) }∞𝑡=0

E0
∑︁
𝑡=0

𝛽𝑡
{
Π𝑡 (𝑓 ) − 𝜒𝑡 (𝑓 ) · I𝑡 (𝑓 )

}
.

The optimal pricing policy boils down to determining a probability of price

adjustment, denoted by ℎ𝑡 (𝑓 ), and, conditional on adjustment, an optimal reset

gap for 𝑥★𝑡 :
𝑥★𝑡 ≡ 𝑝𝑜𝑡 (𝑓 ) − 𝑝★𝑡 (𝑓 ),
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which captures the difference between the static target price and 𝑝★𝑡 , the (dynamic)
reset price set by a firm that decides to adjust its price.3

As is standard in state-dependent models, the solution of the firm problem
has a “Ss flavor”. As we shall discuss, it is convenient to define the firm’s “ex ante”
price gap in period 𝑡 , 𝑥′𝑡−1(𝑓 ), which captures the difference between the target
price and the price chosen by the firm in the previous period:

𝑥′𝑡−1(𝑓 ) ≡ 𝑝𝑜𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 ) (3)

𝑥′𝑡−1(𝑓 ) = 𝑥𝑡−1(𝑓 ) + (1 − Ω) (𝑔𝑡 + 𝜀𝑡 (𝑓 )) + Ω(𝑝𝑡 − 𝑝𝑡−1).

The second line follows from replacing 𝑝𝑜𝑡 (𝑓 ) using Equation (2), replacing𝑚𝑐𝑡 (𝑓 )
using Equation (1), and then using the expressions describing the processes for the
aggregate and idiosyncratic components of𝑚𝑐𝑡 (𝑓 ).

The ex ante price gap 𝑥′𝑡−1(𝑓 ) is measured before the firm decides whether
to adjust its price (ergo, the “ex ante”), but incorporates the realization of all
time 𝑡 shocks through their impact on 𝑝𝑜𝑡 (𝑓 ). Here 𝜀𝑡 (𝑓 ) ≡ 𝜁𝑡 (𝑓 ) + Ω

1−Ω𝜑𝑡 (𝑓 )
denotes a composite i.i.d. idiosyncratic shock, which combines the idiosyncratic
technology and taste shocks. Similarly to the aggregate shock, 𝑔𝑡 , we assume that
the composite idiosyncratic shock is drawn from a mean-zero distribution with
symmetric, uni-modal, and continuously differentiable density. Finally, due to
pricing complementarities, the inflation rate 𝑝𝑡 −𝑝𝑡−1, enters the price gap because
it affects the evolution of competitors’ prices.

Let ℎ𝑡 (𝑥′𝑡−1) be the probability that a firm adjusts the price at 𝑡 conditional
on its ex ante price gap. Then the solution to the firm’s problem can be expressed
as a function of the ex ante price gap:

𝑝𝑜𝑡 (𝑓 ) − 𝑝𝑡 (𝑓 ) = 𝑥𝑡 (𝑓 ) =

𝑥★𝑡 w. p. ℎ𝑡 (𝑥′𝑡−1)

𝑥′𝑡−1(𝑓 ) w.p. 1 − ℎ𝑡 (𝑥′𝑡−1).
(4)

Firms adjust their price with probability ℎ𝑡 (𝑥′𝑡−1). Upon adjustment, they set
3Note that the optimal reset gap does not have an 𝑓 subscript because, to a first order

approximation, the idiosyncratic shocks, 𝜁𝑡 (𝑓 ) and 𝜑𝑡 (𝑓 ), enter both prices in an identical way
and therefore cancel out once we take the difference. Important for this result is the assumption
that idiosyncratic shocks evolve as a random walk.
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their price to 𝑝★𝑡 (𝑓 ). If they do not adjust their price, they keep their gap at
𝑥′𝑡−1(𝑓 ). Thus, as in the standard “Ss” framework, the adjustment probabilities
are endogenous variables and will depend on the distance between the optimal
reset gap 𝑥★𝑡 and the price gap 𝑥′𝑡−1(𝑓 ). We now characterize the optimal reset
probability and the optimal reset gap.

Probability of price adjustment. Let 𝑉 𝑎
𝑡 (𝑓 ) be the firm’s value if it resets its

price to 𝑝★𝑡 and 𝑉𝑡 (𝑥′𝑡−1(𝑓 )) its value if it does not. As we show below, the former
depends on 𝑥★𝑡 (𝑓 ) while the latter is a function of 𝑥′𝑡−1(𝑓 ).

The probability that a firm adjusts its price positively depends on the gap
between the two values. Specifically, dropping the firm index to ease notation,
given the randommenu cost and the random possibility of a free-price adjustment,
ℎ𝑡 (𝑥′𝑡−1)—also known as the generalized hazard function (GHF)—is given by:

ℎ𝑡 (𝑥′𝑡−1) = (1 − 𝜃𝑜) + 𝜃𝑜 · Pr(𝑉 𝑎
𝑡 − 𝜒𝑡 ≥ 𝑉𝑡 (𝑥′𝑡−1))

= (1 − 𝜃𝑜) + 𝜃𝑜 · min
{
𝑉 𝑎
𝑡 −𝑉𝑡 (𝑥′𝑡−1)

𝜒
, 1

}
, (5)

where the second line uses the assumption that the distribution of the menu cost
is uniform. The expression above shows that the probability of price adjustment
in a given period, ℎ𝑡 (𝑥′𝑡−1), depends, among other things, on its ex ante price gap
𝑥′𝑡−1(𝑓 ). Under our assumption that if 𝑝★𝑡 is approximately equal to 𝑝𝑜𝑡 (which, aswe
show later, is approximately true in the data), then ℎ𝑡 (0) = (1−𝜃𝑜), the probability
of a free price adjustment. Also, observe that, as the upper bound for the menu
costs 𝜒 goes to infinity, the adjustment frequency becomes exogenous because it
converges to (1 − 𝜃𝑜). Thus, as a limiting case, the model nests a time-dependent
Calvo model parameterized by 𝜃𝑜 .

Optimal reset gap. We now characterize 𝑉𝑡 (𝑥′𝑡−1), 𝑉 𝑎
𝑡 , and, therefore, 𝑥★𝑡 . The

value of the firm in case of no adjustment is given by:

𝑉𝑡 (𝑥′𝑡−1) = Π𝑡 (𝑥′𝑡−1) + 𝛽 E𝑡

{
ℎ𝑡+1(𝑥′𝑡 ) ·𝑉 𝑎

𝑡+1 +
(
1 − ℎ𝑡+1(𝑥′𝑡 )

)
·𝑉𝑡+1(𝑥′𝑡 )

}
.
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It is a function of current profits Π𝑡 , evaluated at the ex ante price gap 𝑥′𝑡−1(𝑓 ),
and of the discounted expected continuation value. The latter depends on the
probability of adjustment at time 𝑡 + 1, ℎ𝑡 (𝑥′𝑡 ). The value of the firm conditional
on adjusting is the optimized value of 𝑉 with respect to the reset price 𝑝★𝑡 :

𝑉 𝑎
𝑡 = max

𝑝★𝑡

𝑉𝑡 (𝑝𝑜𝑡 (𝑓 ) − 𝑝★𝑡 )

or, equivalently, the optimal reset gap 𝑥★𝑡 solves the first-order condition:

𝑉 ′
𝑡 (𝑥★𝑡 ) = 0.

Under our assumptions of no trend inflation and a quadratic profit function,
𝑥★𝑡 ≈ 0 (see, e.g., Alvarez et al. 2016). The absence of trend inflation implies
that the statically optimal price provides a good approximation of the dynamic
optimal price (𝑝★𝑡 (𝑓 ) ≈ 𝑝𝑜𝑡 (𝑓 )). If there are no strategic complementarities, the
approximation is exact.4 For our purposes, this result has important practical
implications. Our data allow us to construct a measurable counterpart of the ex
ante price gap 𝑥′𝑡−1(𝑓 ) as a simple function of observables, as Equations 2 and
3 suggest, which allows us to directly test the implications of the model in the
microdata. In the analytical exercises that follow, we assume that 𝑥★𝑡 (𝑓 ) ≈ 0. In
Section 5, we verify numerically that this is indeed a good approximation.

Aggregate inflation. Next, we describe the implications of firm-level price
adjustment for aggregate inflation. Given the solution of the firm’s problem in
Equation (4) and using the formula for the price index (Equation (2.1)), we can

4Intuitively, under our assumptions, the combined shocks that affect firms’ pricing decisions
(i.e., the sum of aggregate and idiosyncratic shocks) is a highly persistent variable that
approximately evolves as a randomwalk. Therefore, the optimal price 𝑝★𝑡 (𝑓 ) of the dynamic choice
problem remains very close to the static optimum 𝑝𝑜𝑡 (𝑓 ). Under strategic complementarities, the
static price moves less than the dynamic one. See Alvarez et al. (2023) for a full treatment of menu
cost models with strategic complementarities.
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express aggregate inflation 𝜋𝑡 as:

𝜋𝑡 =

∫ (
𝑝𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )

)
𝑑 𝑓 =

∫
ℎ𝑡 (𝑥 ′𝑡−1(𝑓 )) ·

(
𝑝★𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )

)
𝑑 𝑓

=

∫
ℎ𝑡 (𝑥 ′𝑡−1(𝑓 )) 𝑑 𝑓 ·

∫ (
𝑝★𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )

)
𝑑 𝑓 + Cov

(
ℎ𝑡 (𝑥 ′𝑡−1) , (𝑝★𝑡 − 𝑝𝑡−1)

)
(6)

≈
∫

ℎ𝑡 (𝑥 ′𝑡−1(𝑓 )) 𝑑 𝑓 ·
∫ (

𝑥 ′𝑡−1(𝑓 )
)
𝑑 𝑓 + Cov

(
ℎ𝑡 (𝑥 ′𝑡−1) , 𝑥 ′𝑡−1

)
. (7)

The first line shows that, to a first-order approximation, aggregate inflation is an
average of firm-level price adjustments, which can be expressed as the product of a
firm’s adjustment probability and its price change conditional on adjustment. The
second line decomposes inflation into (i) the product of the average frequency
of price adjustment and the average price adjustment of adjusters, and (ii) the
covariance between the variables. The last line uses the assumption that 𝑝★𝑡 (𝑓 ) ≈
𝑝𝑜𝑡 (𝑓 ) to express aggregate inflation as a function of moments of the distribution
of the ex ante price gaps (𝑥′𝑡−1).

The first term in Equation (6) states that inflation depends on both
the average price gap and the average frequency of price adjustment. With
state-dependent pricing, the adjustment probability is an endogenous object that,
as we will see, increases non-linearly with the absolute value of the price gap.
With Calvo pricing, the adjustment probability is fixed and constant across firms.
Price adjustment is a linear function of the price gap, and inflation is equal to the
product of the constant adjustment frequency and the average price gap.

As in Caballero and Engel (2007) and, more recently, Karadi et al. (2021),
a “selection effect” increases the degree of monetary neutrality in the economy.
This is captured by the covariance term in Equation (6). Firms that are more
likely to adjust are also those that change their prices the most (conditional on
adjustment). That is, the gap between 𝑝★𝑡 (𝑓 ) and 𝑝𝑡−1(𝑓 ) positively co-moves with
𝑥′𝑡−1 and therefore with ℎ(𝑥′𝑡−1). Thus, the selection effect positively contributes to
generating aggregate inflation.
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2.2 Discussion and testable implications

Price gaps and the generalized hazard function. To develop some intuition
on firm’s pricing decisions, we use of a diagram originally presented in Caballero
and Engel (2007) describing the adjustment process in the stationary equilibrium.

Figure 2: Generalized Hazard Function and distribution of price gaps
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Notes. This figure plots the probability density function of price gaps, 𝑓 (𝑥 ′𝑡−1), against the
Generalized Hazard Function (GHF), ℎ(𝑥 ′𝑡−1), evaluated at the steady state of the model.

In Figure 2, the horizontal axis is the density function of the ex ante price
gap, denoted by 𝑓 (𝑥′𝑡−1), which is uni-modal and bell-shaped. The vertical axis
reports the GHF at different points of the price gap distribution, ℎ𝑡 (𝑥′𝑡−1). Firms in
the right (left) tail of the price gap distribution are firms that, given the realization
of 𝑝𝑜𝑡 (𝑓 ), operate with a sub-optimally low markup and therefore are more likely
to increase (decrease) their price relative to the price they changed in the previous
period. The greater concentration of price gaps near the optimum simply reflects
that a firm is more likely to adjust the further its price gap is from the optimum.

Under our quadratic approximation of the profit function and with low trend
inflation, the GHF can be approximated, up to a second order, by a quadratic
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function of the price gap centered around 𝑥′𝑡−1 = 0.5 Specifically, we have that:

ℎ𝑡 (𝑥′𝑡−1(𝑓 )) ≈ (1 − 𝜃𝑜) + 𝜙 ·
(
𝑥′𝑡−1(𝑓 )

)2
. (8)

The GHF is U-shaped and symmetric around the point where the price gap is zero,
which corresponds to the optimum in the stationary equilibrium. At this point,
the adjustment frequency is at a minimum, corresponding to the probability of a
free price adjustment (1 − 𝜃𝑜). As price gaps widen, the adjustment frequency
monotonically increases with it. The parameter 𝜙 ≡ −𝜃0

𝜒

𝜕2𝑉𝑡 (𝑥 ′𝑡−1)
𝜕(𝑥 ′

𝑡−1)2 controls the
sensitivity of the GHF to changes in gaps (i.e., the “steepness” of the parabola).

Nonlinear price dynamics along the price gap distribution. The
endogenous nature of the probability of price adjustment is the key driver
of the nonlinear transmission of shocks into prices in state-dependent models
is. To illustrate this point, we divide the distribution of ex ante price gaps into
equally sized bins, each defined narrowly enough to ensure that the price gap
remains nearly constant within each bin. Starting from the formula for inflation
in Equation (7) and applying the quadratic approximation from Equation (8)
to substitute the hazard function, we derive the following expression, which
characterizes inflation within a bin 𝑏 as a function of the (odd) moments of the
price gap distribution:6

𝜋𝑏 ≈ 𝜙0
𝑏
·
(
𝑥′
𝑏

)
+ 𝜙 ·

(
𝑥′
𝑏

)3
, (9)

where 𝜋𝑏 :=
∫
𝑓 ∈𝑏

(
𝑝𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )

)
𝑑 𝑓 and 𝑥′

𝑏
:=

∫
𝑓 ∈𝑏 𝑥

′
𝑡−1(𝑓 ) 𝑑 𝑓 measure the

average price change the average ex ante price gap (across both adjusters and
non-adjusters) that belong to a given bin 𝑏. The parameter 𝜙0

𝑏
≡

(
1 − 𝜃𝑜 + 𝜙𝜎2

𝑏

)
is

the sum of the free-adjustment probability (1−𝜃𝑜), which is common across bins,
and a term equal to the variance of the price gaps within bin 𝑏 scaled by the GHF
slope parameter (𝜙𝜎2

𝑏
). The latter captures the effect of deviations of the price gap

from zero on the adjustment frequency. It is straightforward to derive the analog
5In Appendix A for the derivation of this result and Alvarez et al. (2022) for a generalization to

asymmetric GHFs.
6See Appendix A for the analytical derivations.
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Figure 3: Nonlinear price dynamics
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Notes. In this figure, we partition the distribution of price gaps into narrow equal-size bins (𝑏). We
plot the average ex ante price gap of each bin, 𝑥 ′

𝑏
, against the average logarithmic price change

for observations in the same bin, 𝜋𝑏 . The gray dashed line represents the fitted values from a
regression of bin-level inflation on a polynomial in the first and third orders of the average gap, as
specified by Equation (9). The weight of each bin in the regression is proportional to the number
of observations within it.

of Equation (9) in the case of a time-dependent Calvo model. Given the constant
exogenous hazard rate ℎ𝑐 = (1 − 𝜃𝑐), we have 𝜋𝑏 = (1 − 𝜃𝑐) ·

(
𝑥′
𝑏

)
.7

The binned scatter plot in Figure 3 illustrates the relationship between price
gaps and inflation across the distribution of gaps. The gray dotted line represents
the fitted values from a regression of bin-level inflation on a polynomial in the first
and third orders of the average gap, as specified by Equation (9).

When price gaps are sufficiently close to zero, the third-order term is
negligible and the average price adjustments are directly proportional to the
average price gap. Thus, the pricing dynamics of firms that operate close to their
optimum are linear in both state- and time-dependent models. This observation
is at the core of the approximate equivalence result between the Calvo and Menu
cost models with small shocks illustrated in Gertler and Leahy (2008), Alvarez et al.

7In a Calvo model, E[𝑝𝑡 (𝑓 ) |I𝑡 (𝑓 )] = E[𝑝𝑡 (𝑓 ) |𝑝★𝑡 (𝑓 ), 𝑝𝑡−1 (𝑓 )] = (1 − 𝜃𝑐 )𝑝★𝑡 (𝑓 ) + 𝜃𝑐𝑝𝑡−1 (𝑓 ),
where I𝑡 (𝑓 ) denotes the information set of a firm entering period 𝑡 . Using the approximation
𝑝★𝑡 (𝑓 ) ≈ 𝑝𝑜𝑡 (𝑓 ) and re-arranging we obtain the equation in the text.
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(2017), and Auclert et al. (2024).
The cubic term opens the door for nonlinear inflation dynamics. Firms at

the tails of the distribution of price gaps are more likely to adjust their prices (the
frequency effect captured by the GHF), and tend to do so more aggressively (the
selection effect discussed in Golosov and Lucas (2007)).

The impact of aggregate cost shocks. Aggregate cost shocks—i.e., shocks that
do not average out—affect the optimal reset prices of all firms in the economy,
shifting the entire distribution of price gaps. When these shocks are large, a
substantial number of firms are displaced into regions of the price gap distribution
where the cubic term becomes non-negligible. This displacement increases the
degree of monetary neutrality in the economy.

Figure 4: Large versus small aggregate cost shocks

Small aggregate cost shock Large aggregate cost shock
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Notes. This figure reports the ex ante price gap distribution in steady state state (black solid line)
and after a small and a large cost shock (black dashed line).

Figure 4 illustrates this point. In the spirit of the exercise in Cavallo et al.
(2024), we shock the economy in its stationary equilibrium with an unexpected
cost shock 𝑔𝑡 > 0, which increases the marginal cost for all firms. The left panel
shows the effect of a small shock, while the right panel shows the effect of a large
shock. The solid lines represent the GHF and the distribution of ex ante price gaps
in the stationary equilibrium. The dashed lines show the post-shock distributions.
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A small shock induces a small shift in the ex ante price gap distribution
which has little or no impact on the average frequency of price adjustment.
This observations is in line with Gertler and Leahy (2008) and Auclert et al.
(2024), showing how the price dynamics generated by a state-dependent model
are observationally similarly to those generated by a time-dependent model when
the economy is hit by small shocks. By contrast, a large cost shock displaces a
sufficient number of firms far from their target price, widening the average gap
in the economy. This results in a sharp increase in the fraction of firms that want
to raise their prices and a lower fraction that wants to reduce them. On average,
this causes a non-trivial increase in the adjustment frequency, which amplifies
aggregate inflation beyond what is accounted by the increase in the average gap.

3 Data and measurement

The backbone of our empirical analysis is the dataset assembled by Gagliardone
et al. (2024). Constructed by integrating different administrative micro-datasets,
this dataset encompasses market interactions between domestic and international
competitors across manufacturing industries in Belgium. It contains information
about firms’ production decisions and a detailed snapshot of firms’ variable
production costs (labor costs and intermediates) at a business cycle (quarterly)
frequency.8

We enhance this data set in two significant ways. First, the data in
Gagliardone et al. (2024) cover a period characterized by low and stable inflation
(1999:Q1 to 2021:Q1). We extend the time-series dimension to include the
recent inflation surge and subsequent tapering (2021:Q2 to 2023:Q4). Second, we
merge new microdata that allow us to accurately measure the frequency of price
adjustments.

8We refer to Gagliardone et al. (2024) for details about the data sources and variable definitions.
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3.1 Measurement of prices, costs, and price gaps

The unit of observation in our data is a firm-industry pair, where industries
are narrowly defined based on 4-digit NACE rev.2 product codes. Our final
dataset includes 5, 348 domestic firm-industry pairs, denoted by a lower-script
𝑓 , distributed across 169 manufacturing industries, denoted by lower-script 𝑖 , 18
sectors (3-digit codes) and 9 macro sectors sectors (2-digit codes).

Price indexes. For each domestic firm, we use PRODCOMdata on product-level
unit values (sales over quantity sold) to construct a firm-industry price index that
aggregates the changes in the domestic prices across the different products of firm
𝑓 in industry 𝑖:

𝑃𝑓 𝑡

𝑃𝑓 𝑡−1
=

∏
𝑝∈P𝑓 𝑡

(
𝑃𝑝𝑡

𝑃𝑝𝑡−1

)𝑠𝑝𝑡
, (10)

where P𝑓 𝑡 represents the set of 8-digit products manufactured by the firm, 𝑃𝑝𝑡
is the unit value of product 𝑝 in P𝑓 𝑡 , and 𝑠𝑝𝑡 is a Törnqvist weight given by the
average within-firm sales share of the product between 𝑡 and 𝑡 − 1, 𝑠𝑝𝑡 ≡

𝑠𝑝𝑡+𝑠𝑝𝑡−1
2 .

Using data from PRODCOM and the customs declarations filed by foreign
firms exporting to Belgium, we construct firm 𝑓 competitors’ price index by
aggregating the domestic price changes of products sold by domestic and
international competitors selling in the same industry as 𝑓 (F𝑖 ):

𝑃
−𝑓
𝑖𝑡

𝑃
−𝑓
𝑖𝑡−1

=
∏

𝑘∈F𝑖\𝑓

(
𝑃𝑘𝑡

𝑃𝑘𝑡−1

)𝑠−𝑓
𝑘𝑡

, (11)

where 𝑠
−𝑓
𝑘𝑡

≡ 1
2

(
𝑠𝑘𝑡

1−𝑠𝑓 𝑡 +
𝑠𝑘𝑡−1

1−𝑠𝑓 𝑡−1

)
represents the Törnqvist weight assigned to

competitor 𝑘 given by the average residual revenue share of competitor 𝑘 in the
industry (excluding firm 𝑓 ’s revenues).

Finally, we recover the times series of firms’ prices (in levels) by
concatenating the indexes in Equation (10), 𝑃𝑓 𝑡 = 𝑃𝑓 0

∏𝑡

𝜏=𝑡0
𝑓
+1

(
𝑃𝑓 𝜏/𝑃𝑓 𝜏−1

)
, where

𝑡0
𝑓
denotes the first quarter when 𝑓 appears in our data. We set the base period

𝑃𝑓 0 to one for all firms. As discussed in the following section, this normalization is
one rationale for removing firm-fixed effects from our empirical measures of price
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gaps. The series of competitors’ prices, 𝑃−𝑓
𝑖𝑡

, is constructed similarly, concatenating
the indexes in Equation (11).

Frequency of Price Adjustment. The frequency of price adjustments is a
crucial variable to characterize the nature of nominal rigidity in the data. To
accurately measure this variable, we use additional micro-level records from the
National Bank of Belgium Business Survey (NBB-BS). This survey interviews a
representative sample of firms within each manufacturing industry on a monthly
basis, asking about their pricing decisions. In a manner similar to the official
Producer Price Index (PPI) data collection, the survey asks firms if they increased,
decreased, or left unchanged the price of a given product in their portfolio. This
allows us to define a Boolean variable that takes value one if, within a given
quarter, the firm reports adjusting prices at least once relative to the previous
month. Averaging the boolean variables across firms and industries in any
given quarter, we compute the average frequency of price adjustment for the
manufacturing sector. Mirroring the notation in themodel, we denote this variable
by ℎ̄𝑡 .

This variable also helps us to clean for spurious price changes in the
micro data. Our measure of prices is based on product-level unit values. Due
to small measurement error, this measure tends to overstate the frequency of
small price changes, as shown by Eichenbaum et al. (2014).9 To address this
measurement problem, we combine the firm-level price changes with information
on the frequency of price adjustment from the NBB-BS to define firm-specific
thresholds, 𝜅+ and 𝜅−, such that a small price adjustment below these thresholds
is treated as no price change:

I+
𝑓 𝑡
= 0 ⇐⇒ Δ𝑝 𝑓 𝑡 < 𝜅+

ℎ
·𝑉𝑎𝑟 𝑓 (Δ𝑝 𝑓 𝑡 ) if Δ𝑝 𝑓 𝑡 > 0

9For example, data from various countries reveals that the share of regular price changes that
are smaller than 1 percent in absolute value is 3 to 4 percent (see, e.g., Cavallo and Rigobon 2016).
This figure is 30 percent in our data, suggesting that many of the small price changes are spurious
price changes.
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I−
𝑓 𝑡
= 0 ⇐⇒ Δ𝑝 𝑓 𝑡 > −𝜅−

ℎ
·𝑉𝑎𝑟 𝑓 (Δ𝑝 𝑓 𝑡 ) if Δ𝑝 𝑓 𝑡 < 0

To account for different degrees of upward and downward nominal rigidity in
the data, we set the thresholds 𝜅+ = 0.75 and 𝜅− = 0.87 to separately match the
average frequency of upward and downward price changes measured using the
NBB-BS micro data:

∑
𝑡

∑
𝑓 I

+
𝑓 𝑡
= ℎ̄+ and

∑
𝑡

∑
𝑓 I

−
𝑓 𝑡
= ℎ̄−, where ℎ̄+ + ℎ̄− = ℎ̄.10

Marginal cost indexes. To derive a firm-level marginal cost index, we assume
a cost structure in which the nominal marginal cost of a firm is proportional to
its average variable costs: 𝑀𝐶𝑛

𝑓 𝑡
= (1 + 𝜈 𝑓 )𝐴𝑉𝐶 𝑓 𝑡 . The coefficient 𝜈 𝑓 captures the

curvature of the short-run cost function, and it is inversely related to the firm’s
short-run returns to scale in production (𝜈 𝑓 ≡ 1/𝑅𝑆 𝑓 − 1). Using the definition of
average variable costs (total variable costs over output, 𝑇𝑉𝐶𝑛

𝑓 𝑡
/𝑌𝑓 𝑡 ) and applying

a logarithmic transformation, we have that firm-level log-nominal marginal cost
is given by:

𝑚𝑐𝑛
𝑓 𝑡
= (𝑡𝑣𝑐𝑛

𝑓 𝑡
− 𝑦𝑓 𝑡 ) + ln(1 + 𝜈 𝑓 ) (12)

In the data, we measure total variable costs as the sum of intermediate costs
(materials and services purchased) and labor costs (wage bill), both of which are
available at the firm-quarter level.We compute a quantity index by dividing a firm’s
domestic revenues by its domestic price index.11 Firm-specific short-run returns to
scale are not directly observable in the data. Therefore, to the extent that individual
firms’ production technologies deviate from constant returns to scale (𝜈 𝑓 ≠ 0),
our measure of log-marginal costs would be missing an additive constant. This
provides a second rationale for removing firm-fixed effects from our measure of
price gaps.

10See Karadi et al. (2021) and Luo and Villar (2021) for evidence of asymmetric upward and
downward rigidity.

11Specifically, we compute 𝑌𝑓 𝑡 = (𝑃𝑌 )𝑓 𝑡/𝑃𝑓 𝑡 , where 𝑃𝑓 𝑡 denotes the firm-quarter domestic
price index. For single-industry firms, 𝑃𝑓 𝑡 coincides with the firm-industry price index 𝑃𝑓 𝑡 . For
multi-industry firms, we construct 𝑃𝑓 𝑡 as an average of the different firm-industry price indexes
using as weights the firm-specific revenue shares of each industry. As discussed in Gagliardone
et al. (2024), the lion’s share of the firms in our sample operate in only one industry, and the main
industry accounts for the lion’s share of sales of multi-industry firms.
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Ex-ante price gaps. The availability of high-frequency data on firm-level
prices, marginal costs, and competitors’ price indexes enables us to construct an
empirical counterpart of the firm-level ex ante price gaps defined in Equation (3):

𝑥′
𝑓 𝑡−1 = 𝑝𝑜

𝑓 𝑡
− 𝑝 𝑓 𝑡−1.

Guided by our theoretical framework, we construct a proxy of firms’ target prices
as a convex combination of the firm’s ownmarginal cost and its competitors’ price
index: 𝑝𝑜

𝑓 𝑡
= (1−Ω)𝑚𝑐𝑛

𝑓 𝑡
+Ω𝑝−𝑓𝑡 . We calibrate Ω to 0.5 to match the micro estimate

in Gagliardone et al. (2024). As we discussed in Section 2, when 𝑝𝑜
𝑓 𝑡

and 𝑝★
𝑓 𝑡

are sufficiently close to each other, 𝑥′𝑡−1(𝑓 ) provides information on inefficiencies
driven by nominal rigidities. A positive ex ante price gap indicates that a firm is
operating with a markup below the profit-maximizing one and, therefore, absent
nominal rigidities, would adjust its price upward.

3.2 Harmonization and data cleaning

We apply the following data cleaning steps and harmonization procedures to the
empirical distributions of price changes and price gaps. To mitigate the noise in
price changes due to the use of unit values, we set to zero the price changes that
are less than 1 percent in absolute value. Note that this adjustment does not affect
our measure of the average frequency of price adjustments, which is computed
precisely using the NBB-BS data on price adjustments, as discussed above. To
remove outliers, we trim observations at the top and bottom 2 percent of the price
changes and the price gaps distribution.

Next, we need to address some differences between our empirical measure
of price gaps and its theoretical counterpart in Equation (3). First, our measure
of 𝑝𝑜

𝑓 𝑡
does not account for the realization of unobservable idiosyncratic taste

shocks (𝜑 𝑓 𝑡 ). Although such shocks average out, they also introduce measurement
error that weakens the connection between price gaps and price changes, at the
individual firm’s level. Second, given our measures of prices and marginal costs,
we can only identify firm’s reset gaps up to an additive constant, which captures
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a combination of unobserved steady-state markups (the constant 𝜇 in Equation
(3)), unobserved deviations from constant short-run returns to scale affecting
marginal costs (the term ln(1+𝜈 𝑓 ) in Equation (12)), and the normalization of price
levels. Third, for analytical tractability, we developed a one-sectormodel assuming
zero trend inflation. In reality, inflation exhibits a small trend (approximately
0.6 percent quarter-on-quarter, before the 2021 surge), which varies between
industries. We also observe strong seasonal patterns in nominal variable costs,
which are higher in the second and fourth quarters, on average. To address
these differences and align the empirical and theoretical price gap measures, we
harmonize the price gaps by removing firm-specific and industry-specific calendar
quarter averages. For consistency, we apply the same harmonization to the
distribution of price changes. By doing so, we account for firm-specific intercepts,
industry-specific seasonal patterns in nominal costs, and trend inflation. It also
mitigates measurement errors in price changes and reset gaps caused by the use
of unit values for price measurements and inaccuracies in measuring marginal
costs.

3.3 The joint distribution of price changes and price gaps:

Summary statistics

Table 1 presents summary statistics of the distribution of firm-level log price
changes, 𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1, and ex ante price gaps, 𝑥′

𝑓 𝑡−1.
The first four columns present moments describing the distribution of

price changes. Panel a focuses on the 1999–2019 period, characterized by low
inflation and, with the exception of the global financial crisis, the absence of
large aggregate shocks. Drawing an analogy with our model, we view this
period as representing the economy in its steady-state distribution. During this
period, the (harmonized) average price change is close to zero, which implies that
inflation is generally aligned with the long-term industry trend (approximately
0.5 percent quarter-on-quarter, on average). The standard deviation of price
changes is 0.11 and the average frequency of price changes is ℎ̄ = 0.29. The latter
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implies that, in a low inflation environment, firms adjust their prices every 3 to 4
quarters, on average. Panel b presents the same statistics for the period 2020–2023,
characterized by high inflationary pressure and subsequent tapering. During this
period, we observe a quarterly inflation rate that is on average 1 percentage point
higher than the trend. At the same time, we observe a substantial increase in the
frequency of price changes by 10 percentage points, on average.

Table 1: Summary statistics of price changes and price gaps

Price change (𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1) Ex ante price gap (𝑥 ′
𝑓 𝑡−1)

Panel a: Time period 2000-2019

Mean Std. Freq. Adj. Kurt. Mean Std. Kurt.

-0.00 0.11 0.29 5.79 -0.00 0.14 2.96

Panel b: Time period 2020-2023

Mean Std. Freq. Adj. Kurt. Mean Std. Kurt.

0.01 0.12 0.38 5.00 0.01 0.15 2.81

Number of observations: 133,401
Number of firm-industry pairs: 5,348
Number of firms: 4,811

Notes. This table reports the summary statistics of the distributions of price changes (𝑝 𝑓 𝑡−1 − 𝑝 𝑓 𝑡 ),
and ex ante price gaps ( 𝑥 ′

𝑓 𝑡−1) before (panel a) and after the inflation surge (panel b).

The fourth column reports the kurtosis of price changes. We calculate this
statistic following the approach in Klenow and Kryvtsov (2008), which involves
standardizing the distribution of price changes by removing firm-level means and
scaling by firm-level standard deviations. The estimated kurtosis is on the high end
of the distribution of estimates found in the literature. This is likely due to the high
sensitivity of this statistic to measurement error and to unobserved heterogeneity,
which we are not able to fully account for.12

The last three columns of Table 1 present summary statistics of the price
12To this point, Alvarez et al. (2016) shows that the empirical estimates of the kurtosis can be

biased upward by 30 percent or more if measurement error and heterogeneity are not appropriately
filtered.
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Figure 5: Empirical distribution of ex ante price gaps
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Notes. The figure presents the empirical probability density function of the price gaps, 𝑓 (𝑥 ′
𝑓 𝑡−1),

in the pre-pandemic period (2000-2019).

gap distribution. This distribution, which is typically unobserved, is of great
interest, as it contains information on inefficiencies due to the rigidities of nominal
prices. Figure 5 presents the probability density function of the price gaps, 𝑓 (𝑥′𝑡−1),
in the pre-pandemic period. The data reveal a price gap distribution that is
unimodal, bell-shaped, and symmetric about the mean. During the inflation surge,
on average, the price gap increased by 1 percentage point relative to its long-term
trend. In line with theoretical predictions, this increase maps to the average
average price change observed over the same period.

4 Micro evidence of state dependent pricing

Guided by the theoretical results presented in Section 2, we design direct empirical
tests of key model predictions that relate the micro-level pricing dynamics to the
underlying price gaps distribution in both low- and high-inflation regimes. These
exercises provide strong evidence of the state-dependent nature of firm pricing
decisions.

23



Figure 6: Empirical GHF and distribution of ex ante price gaps
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Notes. The figure plots the empirical probability density function of the ex ante price gaps 𝑓 (𝑥 ′𝑡−1)
(black line) against the empirical GHF, ℎ(𝑥 ′𝑡−1) (red line). The black dotted line is the fitted value
obtained from a cross-sectional regression of the frequency of price adjustment of a given bin (𝑏)
on a constant and the square of the average price gap of the same bin, as dictated by Equation (8).
In the regression, we weight each bin by the number of observations it counts.

4.1 The empirical Generalized Hazard Function

The relationship between price gaps and the frequency of price adjustments
is the watershed between models featuring state- and time-dependent pricing.
State-dependent models imply a monotonically increasing relationship between
a firm’s probability of price adjustments (captured by the GHF) and the absolute
value of its price gap. In contrast, the two variables are independent in
time-dependent models, resulting in a flat GHF.

We test these predictions in the microdata using information on the
frequency of price adjustment and price gaps. We focus on the pre-pandemic
period (2009–2019). Throughout the paper, we treat this period as a representation
of the economy in steady state, when aggregate shocks are zero and the only
variation in gaps is driven by the realization of idiosyncratic cost and markup
shocks. In Figure 6, the black line represents the probability density function of
price gaps. The red line is the empirical analog of the theoretical GHF, measuring
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the fraction of firms that adjust their prices for each bin of the distribution of price
gaps.

The data reveal a strong connection between the size and magnitude of price
gaps and the frequency of price adjustment. A greater deviation from 𝑥′𝑡−1 = 0
induces a larger fraction of firms to adjust their prices, with a striking resemblance
to the theoretical GHF of state-dependent pricing models. The shape of the
empirical generalized hazard function is equally noteworthy. The GHF displays
a steeper slope to the right, indicating an asymmetry. This asymmetry suggests
that firms’ incentives to adjust prices are greater when their prices are too low
(i.e., when 𝑥 is positive, resulting in a realized markup that is too low) compared
to when their prices are too high.

As discussed in Section 2, under some assumptions, we can approximate the
GHF parametrically as a quadratic function of the price gap, as shown in Equation
(8). To empirically evaluate this expression, we partition the distribution of price
gaps into 500 narrowly defined and equally-sized bins (𝑏). We then estimate a
cross-sectional regression of the frequency of price adjustment for each bin, ℎ𝑏 ,
on a constant term and the square of the average price gap for the same bin, 𝑥′

𝑏
:

ℎ𝑏 = 𝑎0 + 𝑎1 · (𝑥′𝑏)
2 + 𝜈𝑏,

where 𝜈𝑏 is a white noise. The black dotted line in Figure 6 represents the fitted
values obtained from the model. In the regression, we weight each bin by the
number of observations it counts. As we can see, a simple quadratic polynomial
fits the data quite well, despite the asymmetry between upward and downward
adjustment probabilities. Note that, in the vicinity of 𝑥′𝑡−1 = 0, the intercept
estimate (𝑎0) provides an estimate of the parameter 𝜃𝑜 , which controls free price
adjustments. This mapping will prove useful for calibration purposes.
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4.2 Nonlinear price dynamics along the price gap

distribution

In our next exercise, we document the nonlinear cost-price dynamics resulting
from the state dependence of firms’ policies. To illustrate this point, we make
use of Equation (9), which links inflation to (odd) moments of the price gap
distribution.

Figure 7: Nonlinear price dynamics
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Notes. This figure presents a scatter plot of the average ex ante price gap of a given bin of the price
gap distribution, 𝑥 ′ (𝑏), against the average logarithmic price change belonging to the same bin,
𝜋 (𝑏). Bins are defined partitioning the price gap distribution into 500 narrowly defined intervals
of of width ≈ 0.002. The black dashed line depicts a linear fit of price changes on price gaps,
𝜋 (𝑏) = 𝑎0+𝑎1 ·𝑥 ′ (𝑏), estimated using only bins that belong to the center of the price gap distribution
(from the 25th to the 75th percentile). We report in black the estimated slope (𝑎1). The red dashed
line is the fit of a polynomial in the 1 first and 3 rd order of the gap, 𝜋𝑏 = 𝑏1 ·

(
𝑥 ′
𝑏

)
+ 𝑏2 ·

(
𝑥 ′
𝑏

)3,
estimated using bins throughout the entire distribution of price gaps. We report in red the slope of
the polynomial fit in the center and in the tails of the distribution of price gaps. In all regressions,
each bin is weighted by the number of observations it counts.

Again we sort observations into narrowly defined, equally sized bins
spanning the entire price gap distribution. In Figure 7we plot the average price gap
for a given bin (𝑥′

𝑏
, x-axis) against the average price change for observations falling

within the same bin (𝜋𝑏 , y-axis). We then estimate the following cross-sectional
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regressions, which constitute the sample analog of Equation (9):

𝜋𝑏 = 𝑏1 ·
(
𝑥′
𝑏

)
+ 𝑏2 ·

(
𝑥′
𝑏

)3 + 𝜂𝑏

The coefficient𝑏1 captures the average price change associate with a small increase
in the price gap. In Appendix A we show that 𝑏1 converges in probability to
the average frequency of price adjustment in the regression sample and that 𝑏2

converges in probability to 𝜙 , the curvature parameter of the GHF.
By comparing the patterns in Figure 3 to their theoretical counterpart in

Figure 7 we can see just how closely the microdata align with the predictions of
the model. Consider first the bins located at the center of the distribution (bins
covering the 25th to 75th percentiles). Observations in this range are characterized
by relatively low gaps, whichmeans relatively small deviations of their prices from
the target price. We can therefore think of them as representing the distribution
of the economy in “normal times,” with low inflation and small aggregate shocks.
For these observations, the cubic term is small and can be ignored, which implies
that the relationship between inflation and price gaps is approximately linear, as
in Calvo model. This result echoes those in Gertler and Leahy (2008), Alvarez et al.
(2017), and Auclert et al. (2024), which highlight how, in “normal times,” the price
dynamics generated by a state-dependent model resemble those generated by a
time-dependent model, up to first-order. The linearity of the relationship between
price gaps and price changes is also at the core of the identification argument
in Gagliardone et al. (2024), which used microdata to identify the slope of the
cost-based New Keynesian Philips curve in a low inflation environment. To this
point, the estimate of the slope coefficient is 𝑏0 = 0.28 (or 0.29, if we ignore the
cubic term), which almost exactly matches the frequency of price adjustments
observed in our sample in low inflation environment (Table 1, panel a).

Now consider the relationship between price gaps and price changes across
the entire price gap distribution, including its tails. The red dashed red line in
Figure 7 represents the projection of inflation on a the price gap and the cubic
of the price gap of each bin. The micro data offer the opportunity to appreciate
the non-linearities generated by the state-dependent nature of price adjustments.
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When price gaps are wide (for example, when a large aggregate shock hits the
economy), the connection between movements in gaps and movements in prices
increases substantially because of the presence of the cubic term. In fact, the
gradient between price gaps and price changes steepens by 25 percent (from 0.28
to 0.36) as we move from the center to the tails of the price gap distribution.

4.3 Price gaps and price changes conditional on adjustment

So far, we have studied the micro-level relationship between gaps and pricing,
averaging across both firms that adjust and those that don’t. We now focus our
attention on the former group of firms. The theory predicts that, conditional on
adjusting, the firms set 𝑝 𝑓 𝑡 = 𝑝★

𝑓 𝑡
. This implies that 𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1 = 𝑥★

𝑓 𝑡
, when

𝑝 𝑓 𝑡 ≠ 𝑝 𝑓 𝑡−1. Although we can’t measure 𝑥★
𝑓 𝑡

in the data, to the extent that 𝑝𝑜
𝑓 𝑡

provides a reasonable approximation for 𝑝★
𝑓 𝑡
, we should still observe an elasticity

of price changes with respect to ex ante price gaps, (𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1)/𝑥′𝑓 𝑡−1, that is
approximately one. Figure 8 shows that this is indeed the case.

It presents two binned scatter plots that report, on the x-axis, the average
price gap of a given percentile of the price gap distribution of adjusters (that is,
firms for which 𝑝 𝑓 𝑡 ≠ 𝑝 𝑓 𝑡−1) and the corresponding average percentage change
in the prices of firms in the same percentile (y-axis). The left panel focuses on
the pre-pandemic period (1999–2019), and the right panel on the pandemic and
post-pandemic period (2020–2023). In each panel, the black dashed line depicts the
linear fit of price changes on price gaps across the percentiles of the distribution
of price gaps. The data indicate a gradient that is not only positive but also very
close to one, as the theory suggests. Measurement error and the approximation
of 𝑝★

𝑓 𝑡
with 𝑝𝑜

𝑓 𝑡
are likely the two main factors explaining why the gradient is not

exactly one. Interestingly, we find that the gradient is particularly steep during
the post-pandemic period. This could be due to firms being more attentive and
reactive to movements in costs when inflation is high, as shown by Gagliardone
and Tielens (2024) using a model with state-dependent information frictions.
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Figure 8: Price changes and price gaps, conditional on adjusting
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Notes. This figure presents a binned scatter plot of the log price change for adjusters (i.e., firms
for which 𝑝 𝑓 𝑡 ≠ 𝑝 𝑓 𝑡−1) against the ex ante price gap. Each dot marks the average price gap of a
given percentile of the price gap distribution (x-axis) and the corresponding average percentage
change in prices of firms in the same percentile (y-axis). The black dashed line depicts a liner fit of
price changes on price gaps across the percentiles of the distribution of price gaps. The regression
sample excludes the bottom and top 5 percentiles of the price gap distribution, to minimize the
impact of outliers.

4.4 Large cost shocks and shifts in the price gaps distribution

We discussed in Section 2 how small, idiosyncratic shocks generate dispersion in
the price gap distribution, while large aggregate shocks shift the entire distribution
of price gaps, significantly increasing the fraction of firmswhowant to adjust their
prices (Figure 4). The drastic surge and subsequent normalization of production
costs observed in the post-pandemic period allows us to directly test this model’s
prediction in the microdata.

In Figure 9, the black solid line represents the distribution of the price gaps
before the pandemic. In panel a, the red dashed line represents the distribution
in 2022:Q2. During this quarter, on average, firms’ marginal costs increased by
6.2 percent relative to the previous quarter. Accordingly, and consistent with
the theoretical predictions, a cost shock of this magnitude shifts the entire price
gap distribution to the right, so that a significant number of firms’ prices are
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Figure 9: Impact of a aggregate cost shocks on the price gap distribution and
frequency of price adjustment

Panel a: Positive aggregate cost shock
Fr
eq
ue
nc
y
of

pr
ic
e
ad
ju
st
m
en
t

Average freq. price adj. = .63

Average freq. price adj. = .36

-.4 -.2 0 .2 .4
Ex-ante price gap (x't)

2000-2019
2022:Q2

Ex ante price gap (𝑥 ′𝑡−1)

Panel b: Negative aggregate cost shock
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Notes. This figure presents the empirical probability density function of the ex ante price gaps in
the pre-pandemic period, 1999–2019, (black solid line) and in two snapshots of the post-pandemic
period, in 2022:Q2 (red dashed line, panel a) and 2023:Q4 (red dashed line, panel b). The solid and
dashed vertical lines mark the average price gap of the different distributions. The horizontal lines
report the average frequency of price adjustment in the pre-pandemic period (black solid line) and
in 2022:Q2 and 2023:Q4 (red dashed lines).

now further away from their desired levels, resulting in a shift of the distribution
and fatter tails. Because the shock reduces firms’ profit margins, the cost of not
adjusting is larger. Firms adjust their prices upward as more firms move to regions
of the price gap distribution where the GHF is high. Consequently, over a single
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quarter, the average probability of price adjustment almost doubles relative to
the frequency observed in normal times. Once again, a time-dependent model
would not produce any of these results, as its GHF is flat and orthogonal to the
gap distribution.

In panel b, we repeat the same exercise, but now the red line represents
the distribution of price gaps in 2023:Q3. During this quarter, on average, firms’
marginal costs decreased by 3.8 percent relative to the previous quarter, as energy
prices and international supply chains began to normalize. This (negative) cost
shock shifted the price gap distribution to the left, which led to an increase in the
frequency of price adjustment as firms began to lower their prices.

This exercise also reveals that the shocks not only shifted the distribution
of price gaps but also altered its shape, thickening the tails of the distribution.
This observation suggests that, in reality, the aggregate shock due to the
hikes of intermediate costs prices affected firms in a heterogeneous way. This
heterogeneity is accounted for by our theoretical framework and it is an interesting
topic for future research.

5 Aggregate cost-price dynamics

The analysis of the microdata highlighted the state-dependent nature of firms’
price adjustments. We now shift our focus to the aggregate level. We show that the
micro-level dynamics translate into nonlinear inflation dynamics, with the degree
passthrough of aggregate cost shocks into prices varying with the magnitude of
the shock.

5.1 Aggregate inflation and aggregate costs

We use our micro data to compute domestic producer price inflation and an
index capturing changes in production costs for the Belgian manufacturing sector.
Following the standard approach adopted by national statistical agencies, we
calculate domestic PPI inflation as a Törnqvist price index, averaging the quarterly
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changes in domestic firms’ prices and weighting them by the’ Törnqvist weights
𝑠 𝑓 𝑡 ≡

𝑠𝑓 𝑡+𝑠𝑓 𝑡−1
2 :

𝜋𝑡 =
∑︁
𝑓 ∈F

𝑠 𝑓 𝑡 · Δ𝑝 𝑓 𝑡 − 1.

Similarly, we construct an aggregate nominal cost index,𝑚𝑐𝑛𝑡 , by concatenating the
average changes in firm-level nominal marginal costs across producers (Δ𝑚𝑐𝑛𝑡 ):

𝑚𝑐𝑛𝑡 =

2023:𝑄4∑︁
𝑡=1999:𝑄2

Δ𝑚𝑐𝑡

Δ𝑚𝑐𝑡 =
∑︁
𝑓 ∈F

𝑠 𝑓 𝑡 · Δ𝑚𝑐𝑛
𝑓 𝑡
,

where we normalized to zero the value of the index the first quarter of our data
(𝑚𝑐𝑛1999:𝑄1 = 0).

According to our theory, firms price on the basis of current and expected
marginal costs. Therefore, the inflation rate between 𝑡 and 𝑡−4 (the year-over-year
rate, 𝑝𝑡−𝑝𝑡−4) should depend on the nominal marginal cost at 𝑡 , relative to the price
level at 𝑡 −4. We refer to the logarithmic difference between these variables,𝑚𝑐𝑛𝑡 −
𝑝𝑡−4, as the "scaled nominal marginal cost". Figure 10 (panel a) shows the evolution
of manufacturing inflation (red dashed line) and of scaled nominal marginal costs
(black line) throughout our sample period. Keep in mind that the scale of the two
axes differs for the two variables.

As the theory predicts, inflation closely tracks the fluctuations of scaled
marginal cost over the whole sample. But, also consistent with theory, there
is stickiness such that inflation moves less than costs do. At the same time,
underlying the significant surge and subsequent normalization of inflation in the
post-pandemic period was a dramatic rise and fall in scaled marginal costs.

To further stress the contribution of cost passthrough to movements in
inflation, Figure 10, panel b, plots aggregate inflation against the log-change of
average realized markups. We recover the latter as the difference between the
former and the change in our nominal aggregate nominal marginal cost measure:
Δ ln(Markup𝑡 ) ≡ 𝜋𝑡 − Δ𝑚𝑐𝑛𝑡 . This exercise illustrates that, at least in our sample,
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Figure 10: Inflation, cost, and markup dynamics
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Notes. This figure shows the time series of year-over-year manufacturing PPI inflation (𝑝𝑡 − 𝑝𝑡−4)
alongside the times series of the scaled nominal marginal cost index (𝑚𝑐𝑛𝑡 − 𝑝𝑡−4, panel a) and the
log change in average realized markups (Δ ln(Markup𝑡 ), panel b) for the Belgian manufacturing
sector.

the hypothesis that a rise in markups can explain the recent inflation surge seems
to have no bite in the data.13

Finally, to get a sense of what may drive the fluctuations in nominal costs,
Figure 11 presents a decomposition of our aggregate cost index into its different
components. Recall that we measure marginal cost as the ratio of total variable
cost to real output (Equation 12). The top left panel shows the growth rate in total

13Studying the price and cost data for a large global manufacturer, Alvarez et al. (2024b) also find
that markups remained stable markups over time over time, including during the inflation surge.
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variable cost and real output (black lines) relative to the growth rate of the nominal
marginal cost index (red dashed line). The two panels make clear that throughout
the sample, and in particular during the recent inflation surge, fluctuations in total
variable costs are the main drives the time-series evolution of nominal marginal
cost.

Figure 11: Decomposition of aggregate nominal marginal cost index
Total variable costs Physical output
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Notes. This figure decomposes the log change in our nominal aggregate marginal cost index into
the log change in total variable costs (Δ𝑡𝑣𝑐𝑡 , top left panel), real output (Δ𝑦𝑡 , top right panel),
intermediates costs (Δ𝑝𝑚𝑚𝑡 , bottom left panel), and labor costs (Δ𝑤𝑙𝑡 , bottom left panel).

The two panels at the bottom of Figure 11 further decompose total variable
costs into the cost of intermediate inputs (purchases of materials, services, and
energy) and the cost of labor. As we can see, both cost components rose during
the post-pandemic period. However, the increase in the cost of the intermediates
was four times greater. This cost component alone accounts for approximately
70% of the revenues of manufacturing firms, on average. In addition, more than
80% of intermediate input costs come from importing from abroad. These figures
make clear how the shock to the cost of (foreign-supplied) intermediates—rather
than a surge in labor cost—is the main driver of the inflation surge between 2021
and 2023, at least in our sample.
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5.2 Nonlinear cost-price passthrough in the macro data

In panel a of Figure 12 we sort quarters by their measured scaled marginal cost
index and plot this index against PPI inflation. The black dashed line represents
the linear fit between the two variables during periods of low inflation (below 10%
year-over-year), while the red dashed line represents a quadratic fit across both
high- and low-inflation periods. The slope of these curves provide descriptive
evidence on the aggregate passthrough of cost shocks into prices as a function of
the size of the shock to marginal cost.

Consistent with the micro-level dynamics presented in Section 4, we find a
linear relationship between aggregate inflation and nominal costs during normal
times. A linear passthrough is consistent with the predictions of a Calvo model
and with the predictions of a menu cost model when aggregate shocks are small.
The estimated reduced-form form slope is 0.23. Note that this figure aligns with
aggregate passthrough coefficient in Gagliardone et al. (2024) in a low inflation
environment. The linear relationship between the two variables breaks down
when shocks are large. In fact, the passthrough coefficient more than tripled
during the recent inflation surge, revealing highly nonlinear cost-price dynamics.

At the core of this result is the endogenous nature of the frequency of
price adjustment. In Panel b, we sort quarters by their annual inflation rates
and plot aggregate inflation against the average frequency of price adjustments.
As before, the black dashed line shows the linear fit during periods of low
inflation and the red dashed line represents the fit across all inflation regimes.
In low-inflation environments, we observe essentially no relationship between the
average frequency of price adjustments and inflation. Once again, this observation
aligns with assumption of a Calvo model and it suggests that a time-dependent
pricing model provides a good framework to capture nominal rigidities in a
low-inflation environment. However, inflation and frequency of price adjustment
are highly correlated in high inflation environments, as shown by Alvarez et al.
(2019), Cavallo et al. (2023), and Blanco et al. (2024a).
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Figure 12: Passthrough of costs into inflation
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Notes. In panel a, we sort the different quarters in our data according to their realized aggregate
scaled nominalmarginal cost (𝑚𝑐𝑛𝑡 −𝑝𝑡 ) and plot this variable against year-over-yearmanufacturing
PPI inflation (𝜋𝑡 ) in the same quarter. In panel b, we sort the data according to realized
year-over-year manufacturing PPI inflation and plot this variable against the average frequency
of price adjustment (ℎ̄𝑡 ) in the same quarter. The average frequency of price adjustment is a rolling
average of the quarterly frequency of price adjustments over the previous four quarters. In both
panels, the black dashed line represents the linear fit between of the variable on the y-axis based on
the values of the variables on the x-axis during periods of low inflation (below 10% year-over-year);
the red dashed line represents a quadratic fit across both high- and low-inflation periods.
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6 Quantitative implications

Having established the close connection between theory and data, we now use
moments from the microdata to calibrate and simulate the quantitative model
presented in Section 2. We use the calibrated model to perform two types of
quantitative exercises. In a first, more standard, set of exercises, we contrast the
dynamics of our state-dependent model to those of a standard time-dependent
Calvo model in response to small and large shocks. The second set feeds the model
a sequence of aggregate marginal costs extracted from the data and compares the
model-generated aggregate inflation series to the one observed in the data.

6.1 Calibration

We have a total of seven parameters to calibrate. We calibrate four of them to
standard values in the literature. We calibrate the elasticity of substitution between
goods 𝜎 , to 6, which implies a markup of 20 percent in the symmetric steady state
equilibrium. We set 𝛽 , the firm’s risk neutral discount factor, at 0.99. As in our
empirical analysis, we calibrate Ω = 0.5 to reflect the importance of strategic
complementarities estimated in Gagliardone et al. (2024). To align the model and
the data, we allow for a drift in the aggregate component of nominal marginal cost
(𝜇𝑔 = 0.5%), which corresponds to trend inflation rate of 1.6% year over year.

The remaining three parameters, 𝜃𝑜 , 𝜎2
𝜖 , and 𝜒 , control the degree of nominal

rigidity and state-dependency of price adjustments. The standard approach
to calibrate these parameters leverages the theoretical mapping between the
unobservable distribution of price gaps and the observable distribution of price
changes, targeting standard deviation, kurtosis, and frequency of price changes
(see, e.g., Alvarez et al. (2022), and Blanco et al. (2024a)). In theory, we could
use microdata on price changes to recover these moments. In practice, producing
unbiased empirical measures of these moments can be challenging, especially in
our context. The measurement of kurtosis is particularly problematic, as this
moment tends to be sensitive to small measurement error (Alvarez et al. 2016) and
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unobserved heterogeneity (Alvarez et al. 2022), which can mechanically generate
upward bias in the measured statistic (see, e.g., Cavallo and Rigobon 2016).

To circumvent these issues, we developed an alternative calibration
procedure that does not rely on targeting the kurtosis of price adjustments.
Instead, we leverage information subsumed in the joint distribution of price
changes and price gaps and in the empirical GHF during the pre-pandemic period.

First, we have shown strong evidence in favor of a V-shaped GHF (see Figure
6), as captured by Equation (8). We therefore calibrate the free price adjustment
parameter 𝜃𝑜 to match the frequency of price adjustment in a neighborhood of
𝑥′
𝑓 𝑡−1≈ 0.14 This yields an estimate of the free adjustment probability of (1 − 𝜃𝑜)=

0.20. Note that by averaging between thousands of observations in a neighborhood
of 𝑥′

𝑓 𝑡−1 ≈ 0, this calibration tends to be robust to small measurement errors due
to spurious changes in unit values.

Second, when trend inflation is low (as is the case during the pre-pandemic
period) and idiosyncratic shocks are drawn from a Gaussian distribution, Alvarez
et al. (2016) show that the following identity links the average frequency of price
adjustment (ℎ̄), the variance of the price changes, and the variance of idiosyncratic
shocks (𝜎2

𝜖 ) in steady-state:

ℎ̄ · Var𝑠𝑠 (𝑝𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )) = 𝜎2
𝜖 .

We thus simulate the model assuming that the idiosyncratic shocks 𝜀𝑡 (𝑓 ) are i.i.d
draws from a Gaussian distribution N(0, 𝜎2

𝜖 ) and calibrate 𝜎2
𝜖 to 0.0036 to match

the product of the average frequency of price adjustment and the variance of price
changes reported in panel a of Table 1.

Finally, given 𝜎2
𝜖 and 𝜃𝑜 , we calibrate 𝜒 (the upper limit of the uniform

distribution from which the random menu costs are drawn) to 0.6, to allow the
model to match the frequency of price changes in the pre-pandemic period.

14We estimate the empirical analog of Equation (8), ℎ𝑏 = �1 − 𝜃
𝑜
+ 𝜙 ·

(
𝑥 ′
𝑏

)2
+ 𝜖𝑏 , where ℎ𝑏

and 𝑥 ′
𝑏
denote the within-bin average frequency of price adjustment and the average price gap. To

obtain more precise estimates of this parameter, we restrict the estimation sample to bins capturing
observations in the 25 to 75 percentiles of the gaps distribution and assign each bin a regression
weight equal to the share of in each observations.

38



We conclude with two observations lending empirical support to our
calibration procedure. First, in a recent paper, Blanco et al. (2024a) show how
a standard menu costs model with single-product firms calibrated to match the
kurtosis of price changes may need unreasonably high menu costs to rationalize
the data. In our model, in steady state, menu costs amount to 1.7 percent of firm
revenues, on average. This is consistent with the empirical evidence of small menu
costs documented in Levy et al. (1997) and Zbaracki et al. (2004).
Second, as discussed above, we did not target the kurtosis of price changes in our
calibration. Caveat the measurement issues discussed above, we calibrated model
displays a kurtosis of price changes that is about 25 percent lower than the one
computed in the data. This figure is consistent with the results in Alvarez et al.
(2024a), which show that the estimated kurtosis of price adjustment of French CPI
data shrinks by 30 percent once unobserved heterogeneity is controlled for.

Table 2: Calibration: Data vs model

Price change (𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1) Ex ante price gap (𝑥 ′
𝑓 𝑡−1) Share MC

Mean Std Kurt Freq. Adj. Mean Std Kurt. Mean (%)
Data -0.00 0.11 3.23 0.29 -0.00 0.14 4.14 1.22
Menu cost 0.00 0.12 2.62 0.29 0.00 0.09 3.30 1.70
Calvo 0.00 0.12 5.21 0.29 0.00 0.12 5.21

Notes. This table reports moments of the distribution of price changes and price gaps computed
during the period 2000–2020 (panel a) and the correspondingmoments for themenu costmodel and
Calvo model, in steady-state, under our baseline calibration. As we do in the data, the model-based
moments are computed after de-meaning the distribution of price changes and ex ante price gaps.
The last column reports the average share of menu costs paid by firms as a fraction of firms’
revenues. The estimate of this moment in the data comes from Zbaracki et al. (2004).

Table 2 compares the empirical moments of the price changes (panel a) and
price gap distribution (panel b) to the corresponding moments of the menu cost
model, in steady state, under our baseline calibration. The model is able to capture
the data quite well. Notably, although we did not directly target moments of the
distribution ex ante price gaps, our simulated model displays a dispersion and a
degree of leptokurthosis that closely aligns with the empirical one.
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We also consider a standard Calvo model, calibrated to match the
steady-state frequency of price adjustment observed in the data. As explained
in Section 2, our menu costs model nests the Calvo as a special case when the
maximummenu costs, 𝜒 , go to infinity and the probability of free price adjustment,
1 − 𝜃𝑜 , is re-calibrated to match the steady-state frequency of price adjustment.

6.2 Impulse-responses to small and large aggregate shocks

We use the calibrated menu costs and Calvo models to study price dynamics
in response to large and small shocks, under state- and time-dependent
pricing. Starting from an economy in steady steady, we shock the system
with unanticipated, permanent shocks to aggregate marginal cost of different
magnitudes, 𝑔𝑡={2%, 10%, 20%}.

Figure 13 displays the impulse response function of the frequency of price
adjustment (panel a, left) and aggregate inflation (panel a, right). All shocks
increase the optimal reset price, shifting the distribution of price gaps to the right,
thereby triggering an increase in the number of firms adjusting their prices and,
therefore, an inflation. However, as discussed in Section 2 and empirically shown
in Section 4, large shocks lead to a significant shift in the price gap distribution,
displacing many firms in a region where the GHF is higher, generating a spike in
the frequency of price adjustment and, consequently, a rapid and substantial surge
in inflation. These graphs highlight the non-linearities of state-dependent pricing
as shocks grow in magnitude. For example, on impact, the effect of the large shock
on both the frequency of price adjustment and inflation is about three times larger
than the effect of the medium shock, although the former is only twice as large
as the latter (10% vs. 20%). To highlight these features, it is useful to contrast the
IRFs of the menu costs model to those obtained from the Calvo model (Figure 13,
panel b). By construction, in the Calvo the number of firms adjusting their prices
is not affected by the magnitude of the shock (the GHF is a flat across the price
gap distribution) and adjusters are a random sample of the population (aka, there
is no selection effect). As a result, inflation increases with the magnitude of the
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Figure 13: Impact of aggregate cost shocks in state- and price-dependent models
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Notes. This figure presents the impulse responses of inflation and frequency to aggregate cost
shocks of different magnitudes. Panel a reports the impulse response for our state-dependent
pricing model (menu costs model). Panel b reports the impulse responses for a time-dependent
model (Calvo model). The x-axis reports quarters since the shock.

shock, but in a proportional way.
The second observation regards the speed at which the permanent cost

shocks are fully incorporated into prices. Figure 13 highlights how large shocks
induce firms to react faster than small shocks do. The interplay of the endogenous
change in the frequency of adjustment and the selection effect (the observed
price changes come from firms who need it the most) translates into a faster
passthrough from costs into prices. The passthough is notably slower in the Calvo
model, especially in response to large shocks. Figure 14 helps visualize this result,
overlaying the IRFs of inflation in the menu costs and Calvo models in response
to the same size shock.
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Figure 14: Persistence of inflation in state- and time-dependent models
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Notes. This figure presents the impulse responses of aggregate inflation to marginal cost shocks of
different sizes in the menu cost model and in the Calvo model. The x-axis reports quarters since
the shock.

In Appendix B we present two additional quantitative exercises. In the first
exercise, we study how cost shocks of different magnitudes affect both the static
target price 𝑝𝑜

𝑓 𝑡
and the dynamic optimal price 𝑝★

𝑓 𝑡
. We show that the gap between

the two prices is negligible if the cost shock is small, as expected, and remains small
even when the shock is larger. The dynamics of the two prices are particularly
close in the context of the menu cost model relative to the Calvo model. These
results are important because they suggest that the assumption that 𝑝𝑜

𝑓 𝑡
≈ 𝑝★

𝑓 𝑡

needed to derive the expressions for aggregate inflation and within-bin inflation
as a function of ex ante gaps (Equations (7) and (9), respectively) is sensible.

The second exercise studies the role of strategic complementarities in both
state- and time-dependent models. We compare inflation dynamics after high- and
low-cost shocks, without strategic complementarities (Ω = 0) and with strategic
complementarities (Ω = 0.5). As expected, the strategic complementarities lead to
a reduction in the cost pass-through in both the menu costs and the Calvo model.
The greater curvature of the value function under state-dependent pricing implies
that the difference between the impulse-response functions with and without
complementarities is narrower in the menu cost model, especially in response to
a large shock.

42



6.3 Explaining the time series of inflation

Having characterized the price dynamics in response to shocks of different
magnitude, we now turn to evaluating themodel’s ability to explain the time series
of aggregate inflation observed in the data. We feed into our model a sequence
aggregate cost shocks recovered from the data and simulate the model to produce
a time-series of aggregate inflation and frequency of price adjustment. We conduct
the following quantitative exercise for the state-dependent menu costs model and
for its time-dependent Calvo counterpart, calibrated to hit the same steady-state
frequency of price adjustment.

Starting in 1999: Q1, we assume that the economy is in steady state. We
then feed the model a shock to the aggregate component of marginal cost, equal
to the logarithmic change in our aggregate nominal marginal cost index, Δ𝑚𝑐𝑛𝑡 ,
between 1999: Q1 and 1999: Q2. In doing so, we maintain the model’s assumption
that the logarithm of the aggregate component of firms’ marginal costs follows a
random walk with drift. Given this shock, we solve the model and compute the
new distribution of price gaps and the response of inflation to the frequency of
price adjustment, assuming that all future aggregate shocks are unanticipated, as
in an impulse response function. Using the updated distribution of price gap as
the new model’s equilibrium, we repeat this feeding exercise for all subsequent
quarters until 2023Q4, the last period in our sample.

Figure 15 compares model simulations and data for three series: quarterly
inflation, year-over-year inflation, and the quarterly frequency of price
adjustment. Panel a and b show that the menu costs model (black line) can capture
fluctuations in manufacturing inflation well, both during the moderate inflation
regime characterizing the pre-pandemic period and during the post-pandemic
inflation surge and bust.

Note also that, during the pre-pandemic period, the menu cost model
is nearly indistinguishable from the Calvo model, consistent with the price
adjustment frequency being relatively stable over this period. The Calvo model
also exhibits an inflation surge during the pandemic era, but of only about
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Figure 15: Inflation and frequency of price adjustment: Model versus data
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Notes. This figures contrasts the dynamics of PPImanufacturing inflation in the data to the inflation
dynamics generated by the Calvo and menu costs models, after feeding the model a sequence of
aggregate nominal marginal cost shocks that matched the one observed in the data.
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two-thirds of that generated by the menu cost model. This exercise also highlights
the more sluggish behavior of inflation produced by the Calvo model relative to
that generated by the menu cost model. This is consistent with the faster cost
pass-through generated by the state-dependent pricing policies documented in
the impulse response function of Section 6.2.

Finally, panel c plots the quarterly frequency of price adjustment. The model
captures the stable behavior of the adjustment frequency pre-pandemic, though
it misses the smooth trend decline between 2012 and 2019. However, the model
captures well the sharp jump in the adjustment frequency following the onset
of the pandemic, both in terms of timing and magnitude. As inflation drops,
the model’s frequency recedes faster than in the data. It is possible that firms
anticipated the mean reversion in nominal marginal costs better than our random
walk model would suggest.

7 Concluding Remarks

We have developed a state-dependent pricing model designed to provide an
accounting of aggregate price dynamics across both high and low inflation
regimes. The model explains both the low stable inflation of the pre-pandemic
period and the pandemic era surge. It also captures the associated changes in the
price adjustment frequency.

Unlike previous studies, we leverage detailed information on prices and costs
to construct a direct measure of firm’s price gaps. Studying the joint variation
of prices and price gaps, we show how firms’ behavior is consistent with the
state-dependent framework. At the micro level, variation in price gaps determines
both the likelihood that a firm adjusts its price and how much its price changes
conditional on adjustment.

At the macro level, we document linear cost-price dynamics in "normal"
times, when aggregate inflation is low. That is, aggregate inflation is well
approximated by the product of a fixed price adjustment probability and the
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average price gap. In contrast, during the inflation surge, cost-price dynamics
were highly nonlinear. The sharp increase increase marginal cost led to not only a
jump in price gaps but also a significant increase in adjustment probabilities. This
extensive margin of price adjustment is the hallmark of state-dependent pricing
models, but it is absent in time-dependent models, such as the workhorse Calvo
(1983) model.

Overall, we find that conditional on the path of marginal cost, the
state-dependent pricing model does a good job of capturing price dynamics both
at the firm and aggregate levels. A natural next step is to improve the modeling of
marginal cost and its connection to real activity. The conventional New Keynesian
model (for example, Galí 2015) typically includes labor as the only variable input,
implying that the marginal cost is measured by the labor share. However, our
analysis suggests that the main variation in marginal cost during the inflation
surge was due to sharp increases in the cost of intermediate inputs. Extending
a state-dependent version of the New Keynesian model to allow for intermediate
inputs, primary commodities and energy, and supply chains is on the agenda for
future research.
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Micro and macro cost-price dynamics
during inflation surges versus normal times

L. Gagliardone M. Gertler S. Lenzu J. Tielens

Appendix

A Derivations

A.1 Derivation of markup function

Assume that a perfectly competitive retailer assembles a bundle of intermediate
inputs into a final product, 𝑌𝑡 . The bundle is Kimball aggregator of differentiated
goods produced by a continuum of producers (indexed by 𝑓 ):∫ 1

0
Υ

(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
𝑑 𝑓 = 1,

where Υ(·) is strictly increasing, strictly concave, and satisfies Υ(1) = 1.
Taking as given demand 𝑌𝑡 , each firm minimizes costs subject to the

aggregate constraint:

min
𝑌𝑡 (𝑓 )

∫ 1

0
𝑃𝑡 (𝑓 )𝑌𝑡 (𝑓 )𝑑 𝑓 s.t.

∫ 1

0
Υ

(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
𝑑 𝑓 = 1.

where 𝑃𝑡 (𝑓 ) ≡ 𝑃𝑡 (𝑓 )
𝑒𝜑𝑡 (𝑓 )

is the quality-adjusted price. Denoting by 𝜓 the Lagrange
multiplier of the constraint, the first-order condition of the problem is:

𝑃𝑡 (𝑓 ) = 𝜓Υ′
(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
1
𝑌𝑡

(A.1)

Define implicitly the industry price index 𝑃𝑡 as:∫ 1

0
𝜙

(
Υ′(1)𝑃𝑡 (𝑓 )

𝑃𝑡

)
𝑑 𝑓 = 1

where 𝜙 := Υ ◦ (Υ′)−1. Evaluating the first-order condition (A.1) at symmetric
prices, 𝑃𝑡 (𝑓 ) = 𝑃𝑡 , we get 𝜓 =

𝑃𝑡𝑌𝑡
Υ′ (1) . Replacing for 𝜓 , we recover the demand
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function:
𝑃𝑡 (𝑓 )
𝑃𝑡

=
1

Υ′(1)Υ
′
(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
. (A.2)

Therefore, the demand function faced by firms when resetting prices is:

D𝑡 (𝑓 ) = (Υ′)−1

(
Υ′(1)

𝑃𝑜𝑡 (𝑓 )
𝑃𝑡

)
𝑌𝑡

Taking logs of Equation (A.1) and differentiating, we obtain the following
expression for the residual elasticity of demand:

𝜖𝑡 (𝑓 ) := −𝜕 lnD𝑡 (𝑓 )
𝜕 ln 𝑃𝑜𝑡 (𝑓 )

= −
Υ′

(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
Υ′′

(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
·
(
𝑌𝑡 (𝑓 )
𝑌𝑡

) (A.3)

We now use this result to derive the expression for the log-linearized desired
markup. As above, for ease of exposition, we focus on the symmetric steady
state. Denote the steady-state residual demand elasticity by 𝜖 = − Υ′ (1)

Υ′′ (1) . Then
the derivative of the residual demand elasticity 𝜖𝑡 (𝑓 ) in (A.3) with respect to 𝑌𝑡 (𝑓 )

𝑌𝑡
,

evaluated at the steady state, is given by:

𝜖′ =
Υ′(1) (Υ′′′(1) + Υ′′(1)) − (Υ′′(1))2

(Υ′′(1))2 ≤ 0, (A.4)

which holds with equality if the elasticity is constant (e.g., under CES preferences).
The desired markup is given by the Lerner index. Log-linearizing the Lerner

index around the steady state and using Equation (A.4), we have that, up to a
first-order approximation, the log-markup (in deviation from the steady state) is
equal to:

𝜇𝑡 (𝑓 ) − 𝜇𝑓 =
𝜖′

𝜖 (𝜖 − 1) (𝑦𝑡 (𝑓 ) − 𝑦𝑡 )

Finally, log-linearizing the demand function (A.1) and using it to replace the log
difference in output, we obtain:

𝜇𝑡 (𝑓 ) − 𝜇𝑓 = −Γ
(
𝑝𝑜𝑡 (𝑓 ) − 𝑝𝑡

)
where, in the case of Kimball preferences, the sensitivity of the markup to the
relative price is given by Γ := 𝜖′

𝜖 (𝜖−1)
1

Υ′′ (1) . Finally, replacing the log-linearized
markup into the formula for the static optimal target price (obtained from cost
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minimization):

𝑝𝑜𝑡 (𝑓 ) = 𝜇𝑡 (𝑓 ) +𝑚𝑐𝑡 (𝑓 )

= 𝜇𝑓 + (1 − Ω)𝑚𝑐𝑡 (𝑓 ) + Ω(𝑝𝑡 + 𝜑𝑡 (𝑓 ))

where Ω ≡ Γ
1+Γ is the degree of strategic complementarities.

Quadratic approximation of Generalized Hazard Function

We now derive the expression for the quadratic approximation of the hazard
function in Equation (8) and describe how we take this equation to the data.

We take a second-order approximation of the hazard function ℎ𝑡 (𝑥′𝑡−1) in
characterized in Equation (5) around 𝑥★𝑡 to obtain:

ℎ𝑡 (𝑥′𝑡−1) ≈ (1 − 𝜃 0) − 𝜃0

𝜒

𝜕𝑉𝑡 (𝑥★𝑡 )
𝜕(𝑥′

𝑡−1)
(𝑥′𝑡−1 − 𝑥★𝑡 ) −

𝜃0

𝜒

𝜕2𝑉𝑡 (𝑥★𝑡 )
𝜕(𝑥′

𝑡−1)2 (𝑥
′
𝑡−1 − 𝑥★𝑡 )2

= (1 − 𝜃 0) − 𝜃0

𝜒

𝜕2𝑉𝑡 (𝑥★𝑡 )
𝜕(𝑥′

𝑡−1)2 (𝑥
′
𝑡−1)2,

where the second equation follows from 𝜕𝑉𝑡 (𝑥★𝑡 )
𝜕(𝑥 ′

𝑡−1)
= 0 for a firm that is resetting its

price and from our assumption that 𝑥★𝑡 ≈ 0. Defining 𝜙 ≡ −𝜃0
𝜒

𝜕2𝑉𝑡 (𝑥 ′𝑡 )
𝜕(𝑥 ′𝑡 )2 we have that

the GHF can be approximated, up to second order, by a quadratic function of the
ex ante price gap as in Equation (8):

ℎ𝑡 (𝑥′𝑡−1(𝑓 )) ≈ (1 − 𝜃𝑜) + 𝜙 ·
(
𝑥′𝑡−1(𝑓 )

)2
.

The parameter 𝜙 controls the sensitivity of the GHS to changes in gaps (i.e., the
"steepness" of the parabola).

Averaging across firms we have that the average frequency of price
adjustment is given by:

ℎ̄𝑡 (𝑥′𝑡−1) ≡
∫
[0,1]

ℎ𝑡 (𝑥′𝑡−1(𝑓 )) ≈ (1 − 𝜃𝑜) + 𝜙 ·
∫
[0,1]

(
𝑥′𝑡−1(𝑓 )

)2
𝑑 𝑓 (A.5)

To take Equation (A.5) to the data, we partition the support of the distribution
ex ante price gap into equally spaced bins. Assume that the first and second
moments of the distribution of 𝑥′𝑡 (𝑓 ) within each bin exist and denote them by
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𝑥′
𝑏
≡

∫
𝑓 ∈𝑏 𝑥

′
𝑏𝑡−1(𝑓 ) 𝑑 𝑓 and 𝜎2

𝑏
≡

∫
𝑓 ∈𝑏 (𝑥

′
𝑡−1(𝑓 ) − 𝑥′

𝑏
)2 𝑑 𝑓 .

Adding a white noise disturbance, 𝜈𝑏 , we obtain the cross-sectional
regression model:

ℎ𝑏 (𝑥′𝑏) = 𝑎1 + 𝑎2 ·
(
𝑥′
𝑏

)2 + 𝜈𝑏 . (A.6)

Estimating model (A.6) via weighted least squares (weighting observations by the
number of observations within each bin) allows us to calibrate the free-adjustment
parameter, 𝜃 0 = 𝑎1 − 1, and the steepness parameter, 𝜙 = 𝑎2. Plugging these
estimates into Equation (A.5) and using the information on the first and second
moments of the price gaps across bins, we can characterize the empirical GHF, as
shown by the dotted line in Equation (6).

Cubic approximation of inflation within a bin

We partition the distribution of price gaps into bins denoted by 𝑏. As before,
we denote by 𝑥′

𝑏
and 𝜎2

𝑏
the first and second moments of the ex ante price gap

distribution within a bin.
Using Equation (A.5) and the formula of the variance, we have that the

average frequency of price adjustment for firms in bin 𝑏 is given by:

ℎ𝑏 (𝑥′𝑏) =
∫
𝑓 ∈𝑏

ℎ𝑡 (𝑥′𝑡−1(𝑓 )) 𝑑 𝑓 ≈ (1 − 𝜃𝑜) + 𝜙

(
(𝑥′

𝑏
)2 + 𝜎2

𝑏

)
. (A.7)

Next, consider the expression for aggregate inflation under the assumption that
𝑝★𝑡 (𝑓 ) ≈ 𝑝𝑜𝑡 (𝑓 ) in Equation (7). We choose these bins to be sufficiently narrow
such that within each bin the covariance between the GHF is approximately zero:∫
𝑓 ∈𝑏 ℎ𝑡 (𝑥

′
𝑡−1(𝑓 )) · 𝑥′𝑡−1(𝑓 ) 𝑑 𝑓 ≈ 0. When this condition is satisfied, we have that

inflation within a bin is given by:

𝜋𝑏 ≈
∫
𝑓 ∈𝑏

ℎ𝑡 (𝑥′𝑡−1(𝑓 )) 𝑑 𝑓 ·
∫
𝑓 ∈𝑏

(
𝑥′𝑡−1(𝑓 )

)
𝑑 𝑓 = ℎ𝑏 (𝑥′𝑏) · 𝑥

′
𝑏
.

Finally, we use the expression in (A.7) to substitute forℎ𝑏 (𝑥′𝑏) in the equation above
and define the bin-specific coefficient 𝜙0

𝑏
≡

(
(1 − 𝜃𝑜) +𝜙𝜎2

𝑏

)
to obtain Equation (9)
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in the paper:

𝜋𝑏 ≈ (1 − 𝜃𝑜) + 𝜙

(
(𝑥′

𝑏
)2 + 𝜎2

𝑏

)
· 𝑥′

𝑏

= 𝜙0
𝑏
𝑥′
𝑏
+ 𝜙 (𝑥′

𝑏
)3, (A.8)

The equation above represents the data generating process behind the binned
scatter plot in Figure (7). To take this equation to the data, we estimate the
following cross-sectional regression model:

𝜋𝑏 = 𝑏1𝑥
′
𝑏
+ 𝑏2(𝑥′𝑏)

3 + 𝜂𝑏 . (A.9)

where the error term 𝜂𝑏 ≡ (𝜙0
𝑏
− 𝑏1)𝑥′𝑏 + 𝜈𝑏 , with 𝜈𝑏 representing a white noise

disturbance.
We want to show that (i) the coefficient in front of the linear term, 𝑏1,

is a constant that equals the average frequency of price adjustment between
observations that belong to the bins in the regression sample; (ii) the estimate
of 𝑏1 is unbiased. (iii) 𝑏2 converges in probability to 𝜙 .

Denote by𝜎2
𝑏
the average of the variances between all bins𝑏 in the regression

sample. Adding and subtracting 𝜙𝜎2
𝑏
to Equation (A.8) we obtain:

𝜋𝑏 ≈
(
(1 − 𝜃𝑜) + 𝜙𝜎2

𝑠𝑠

)
· 𝑥′

𝑏
+ 𝜙 (𝑥′

𝑏
)3 +

(
𝜙 (𝜎2

𝑏
− 𝜎2

𝑠𝑠) · 𝑥′𝑏
)

where the the
(
𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏

)
is equal to the error term, 𝑣𝑏 , in regression (A.9).

The term
(
(1 − 𝜃𝑜) + 𝜙𝜎2

𝑏

)
is equal to the coefficient 𝑏1. Given that the average

price gap is approximately zero,
∫
(𝑥′

𝑓 𝑡−1)
2 𝑑 𝑓 ≈ 0 and the coefficient in front of

the linear term captured the average frequency of price adjustment across the bins
in the regression sample:

(
(1 − 𝜃𝑜) + 𝜙𝜎2

𝑏

)
≈ ℎ̄𝑏 .

Finally, we can show that estimator 𝑏1 from model (A.9) converges in
probability to ℎ̄𝑏 . To do this, we need to show that the following exclusionary
restriction holds:

𝐶𝑜𝑣 (𝑥′
𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) = 0
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Define an indicator for a gap being positive:

I+ ≡


1 if 𝑥′
𝑏
> 0

0 otherwise

and similarly for the negative gaps (I−). Then, we have that:

𝐶𝑜𝑣 (𝑥′
𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) =

𝐶𝑜𝑣 (I+ · 𝑥′
𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) +𝐶𝑜𝑣 (I− · 𝑥′

𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) =

𝐶𝑜𝑣 (I+ · 𝑥′
𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) −𝐶𝑜𝑣 (I− · 𝑥′

𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) =

𝐶𝑜𝑣 (I+ · 𝑥′
𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) −𝐶𝑜𝑣 (I+ · 𝑥′

𝑏
, 𝜙 (𝜎2

𝑏
− 𝜎2

𝑏
) · 𝑥′

𝑏
) = 0

where the last line follows from the fact that both 𝑥′
𝑏
and (𝜎2

𝑏
− 𝜎2

𝑏
) are symmetric

around zero. Finally, the same argument applies to (𝑥′
𝑏
)3, so the estimator is

consistent.

B Additional quantitative exercises

In this section, we present additional quantitative exercises using the simulation
of the calibrated menu costs and Calvo models. The first set of exercises study how
cost shocks affect both the static target price 𝑝𝑜

𝑓 𝑡
and the dynamic optimal price

𝑝★
𝑓 𝑡
. The second exercise studies the role of strategic complementarities in price

setting.

Approximation of 𝑝★
𝑓 𝑡

with 𝑝𝑜
𝑓 𝑡
. As discussed in Section 2, the two prices

coincide in a steady state with zero trend inflation and constant markups. We also
argued that the two prices remain sufficiently close to each other as long as trend
inflation is not too large, even in the presence of strategic complementarities in
pricing. We therefore assumed 𝑝𝑜

𝑓 𝑡
≈ 𝑝★

𝑓 𝑡
, which implies that 𝑥★

𝑓 𝑡
≈ 0, and derived

expressions for aggregate inflation and within-bin inflation as a function of ex
ante price gaps (Equations (7) and (9), respectively). The question is how well 𝑝𝑜

𝑓 𝑡

approximates 𝑝★
𝑓 𝑡
away from the steady state.

The impulse response functions shown in Figure A.1 indicate that, as
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Figure A.1: Impulse responses: Static vs dynamic price targets
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Panel b: Time-dependent pricing (Calvo)
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Notes. This figure presents impulse responses of the static target price (𝑝𝑜 ) and the optimal reset
price (𝑝★) to aggregate cost shock of different sizes. The x-axis reports quarters since the shock.

expected, the static reset price responds more than the static one to cost shocks,
since the dynamic optimum 𝑝★

𝑓 𝑡
accounts for the marginal cost being a persistent

process, though not a pure random walk, due to strategic pricing motives.
However, this exercise also shows that the gap between the two prices is negligible
if the shock is small, as expected, and remains small even when the shock is
large. Thus, the assumption that 𝑝𝑜

𝑓 𝑡
≈ 𝑝★

𝑓 𝑡
is sensible. Additionally, this exercise

demonstrates how the dynamics of the two prices are particularly close in the
context of the menu cost model relative to the Calvo model.

Next, we verify that using 𝑝𝑜
𝑓 𝑡

as an approximation for 𝑝★
𝑓 𝑡

has a small
impact on aggregate inflation dynamics once we feed the model a sequence of
aggregate nominal marginal cost shocks that matched the one observed in the
data. Figure A.2 repeats the same quantitative exercise presented in Figure 15.
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The black line displays the time-series of model-based quarterly inflation using
𝑝★
𝑓 𝑡

as a measure of target price; the red dashed line displays the time-series of
model-based inflation, solving the model with 𝑝𝑜

𝑓 𝑡
as a proxy for 𝑝★

𝑓 𝑡
.

Figure A.2: Quarter-over-quarter inflation: Static vs dynamic price targets
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Notes. This figure contrasts the inflation dynamics generated by the menu cost model using 𝑝★

(the exact, dynamic reset price) and using 𝑝𝑜 (the static approximation of 𝑝★) when solving the
model. As in Figure 15, we solve the model feeding it a sequence of aggregate nominal marginal
cost shocks that matched the one observed in the data.

The role of strategic complementarities. Strategic complementarities in the
setting of prices are one factor that contributes to explaining the differential
dynamics of static and dynamic reset prices in time- and state-dependent models.
Figure A.3 compares inflation dynamics after high- and low-cost shocks, without
strategic complementarities (Ω = 0) and with strategic complementarities (Ω =

0.5). As before, Panels a and b report the impulse response functions for
the menu cost model and the Calvo model, respectively. As expected, the
strategic complementarities generate additional discounting, which reduces cost
pass-through in bothmodels. However, we can see how the difference between the
impulse-response with and without complementarities is narrower in the menu
cost model, especially in response to a large shock. This is due to the greater
curvature of the value function under state-dependent pricing.
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Figure A.3: The role of strategic complementarities

Panel a: State-dependent pricing (Menu costs)
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Panel b: Time-dependent pricing (Calvo)
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Notes. This figure presents the impulse responses of inflation to aggregate cost shocks of
different sizes, without strategic price complementarities (Ω = 0, black line) and without strategic
complementarities (Ω = 0.5, red dashed line). The blue dotted line represents the ratio of the
impulse response under Ω = 0 over the impulse response under Ω = 0.5. Panel a reports the
impulse response for our state-dependent pricing model (menu costs model). Panel b reports
the impulse responses for a time-dependent model (Calvo model), calibrated to display the same
steady-state frequency of price adjustment as the time-dependent model. The x-axis reports
quarters since the shock.
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